MATH 203

LINEAR ALGEBRA

Monday Wednesday and Friday  11:00 to 12:40 PM   Room A211             

Instructor: Larry Green

Phone Number

Office: 541-4660 Extension 341

Internet e-mail:...greenL@LTCC.edu

Home Page:   http://www.ltcc.edu/academics.asp?scatID=5&catID=34" http://www.ltcconline.net/greenl/syllabi/w08/203syl.htm

Grades

Required Text Introductory Linear Algebra With Applications eighth edition by Kolman and Hill

Course Description This course covers linear equations, matrices, determinants, vector spaces, inner product spaces, linear transformations, eigenvalues and eigenvectors and their applications to engineering and business.

Course Objectives
Students will be able to:

  1. 1. Apply the theory and techniques of linear algebra in applications from physics, operations research and other scientific disciplines.
  2. Solve linear systems, including under- and over-determined systems.
  3. Prove lemmas and corollaries in linear algebra.
  4. Relate linear transformations to their matrices with respect to given bases.
  5. Describe linear transformations as functions mapping an n-dimensional space to an m-dimensional space.

Prerequisite A grade of C or better in Math 107 or equivalent.

Grading Policy Your letter grade will be based on your percentage of possible points.

A 90 -- 100%        C 70 -- 79%

B 80 -- 89%          D 60 -- 69%

Homework: ....................................….150 points

Exam 1: Jan 27.....................…..…......150 points

Exam 2: Feb 22................................…150 points

Exam 3: Mar 22.....................………...150 points

Final Exam: Mar 24............................…....400 points

Exam Policy Students are to bring calculators, pencils or pens, and paper to each exam.  Grading will based on the progress towards the final answer, and the demonstration of understanding of the concept that is being tested, therefore, work must be shown in detail.  Any student who cannot make it to an exam may elect to take the exam up to two days before the exam is scheduled. If all homework is completed and no more than three homework assignments receive a score of 5 or less, then the midterm with the lowest score will be dropped.

Homework Policy   Homework will be turned in by 4:00 PM on the due date. Homework that is turned in within one week of the due date will be counted as half credit.  Homework may be turned later than one week after the due date, but points will not be awarded. 

 

Registration

In this class, it is your responsibility to drop the class in order to avoid an unwanted grade.

 



OFFICE HOURS:

Monday  ............................  1:00 to 2:00           MSC

Tuesday..........................      12:00 to 1:00         MSC

Wednesday ....................      1:00 to 2:00           A210

Thursday........................       12:00 to 1:00         A210

Friday........................            1:30 to 2:00            A210



CALCULATORS: The TI 89 or the TI 92 is required for this class. Calculators will be allowed on part of the exams.  The TI 89 is available to rent in the Library

Some Hints on the TI 89

LEARNING DISABILITIES: If you have a learning disability, be sure to discuss your special needs with Larry. Learning disabilities will be accommodated.

TUTORING:  Tutors are available at no cost in the Math Success Center.

A WORD ON HONESTY:  Cheating or copying will not be tolerated. People who cheat dilute the honest effort of the rest of us.  If you cheat on a quiz or exam you will receive an F  for the course, not merely for the test.  Other college disciplinary action including expulsion might occur. Please don’t cheat in this class.  If you are having difficulty with the course, please see me.


HOMEWORK ASSIGNMENTS

Lecture will always be geared towards an explanation of the topics that will be covered on the upcoming homework assignment.

Date    Section  Topic                             Exercises

1-4                     Introductions

1-6       1.1         Linear Systems             7,12,T1,T2,T3
            1.2         Matrices                       1,6,9,T1,T4,T6a

1-8       1.3        Multiplication                 8,13,15,22,32,T3,T7,T10,T13
              1.4        Matrix Properties           5,8,13,15,T4,T5,T6,T10,T18,T23,T32

 

1-11      1.5       Matrix Transformations   1,4,7,15,18,T1,T2,T3
                         Interactive Matrix Animation

1-13     1.6        Solutions to Systems      1,6,12,15,24,30,41,54,T2,T8,T11,T12
            1.7        Inverse                           3,8,13,20,25,28,T1,T6,T9,T10

1-15     2.2         Graph Theory                 1,2,5,6,9,11,12,13,14,T1
            2.3      Computer Graphics    1,3,6,10,13,15 
                        Interactive Matrix Animation 

 

1-18     Happy Birthday Martin Luther King         

1-20       2.4            Electric Circuits              1,2,3,5,6,7,T1,T2
              2.7        Wavelets                        1,2,3,4,5,6,7

1-22      3.1       Definitions and Props       2,5,8,11,16,19,22,23,T3,T5,T6,T10,T12

 

 

1-25     3.2      Cofactor Expansions               3,8,13,18,T3,T7,T8,T10           
            3.3       Computational Determinants    Read Only

1-1-27    Exam I
             Theorems for Midterm I

1-29    4.1     Plane Vectors              3,8,13,19,26,T2,T3,T6 
           4.2      n-vectors                    3,8,13,25,30,T2,T6,T8,T10,T11          

   

 

2-1     4.3      Lin. Trans. Intro.        1,4,9,13,17,24,27,32,T3,T6,T8,T9,T10

2-3     6.1      Vector Spaces           1,4,5,10,15,20,T1,T2,T5,T6 
          6.2      Subspaces                  1,6,11,16,18,20,21,22,T2,T3,T6,T9,T10

2-5     6.3     Linear Independence    1,5,10,15,T3,T4,T10,T12,T13

      

2-8      6.4    Basis & Dimension         5,18,21,26,29,32,35,T9,T11,T12,T14

2-10      6.5    Homogeneous Systems   1,5,8,11,14,19,22,T1,T3,T4
             6.6    Rank                               1,6,9,14,17,20,23,27,34,T4,T7,T10

2-12        Lincoln's Birthday

       

2-15        Happy Birthday George Washington

2-17     6.7    Change of Basis               2,7,10,17,22,24,T1,T4,T5,T7
               

2-19     6.8     Orthonormal Bases         1,6,11,16,21,T3,T5,T8,T11    

             

  

2-22      Exam II          Theorems

2-24      6.9    Orthogonal Complements       1,4,7,10,T1,T2,T4,T5

2-26      B1     Inner Product Spaces             2,7,17,27,34,37,T2,T5,T7

     

 

3-1       7.2      Least Squares                         1,4,7,11,13,16,T1
            7.3
    More on Coding                     2,6,9,12,15,18,21,T4,T5

3-3       8.1      Eigenvalues &  Eigenvectors    1,4,9,14,19,22,T1,T3,T5,T8,T11

3-5       8.2      Diagonalization                        1,9,16,23,28,31,38,T1,T2,T5,T9
            8.3      Symmetric Matrices                 2,5,8,11,14,17,T1,T2,T4,T6,T8

      

 

3-8      9.1       Fibonacci                                1,2,3,4,T1

3-10     9.4      Conic Sections                        11,20,21,23,26 
            9.5
      Quadric Surfaces                     1,4,7,20,13       

3-12   10.1      Definitions & Examples           1,4,7,13,14,17,T4,T6,T8,T10,T13  

    

 

3-15    10.2      Kernel and Range                    1,4,10,14,17,18,T3,T5,T7,T9,T10      

3-17    10.3     Transformation Matrices           1,4,7,10,13,T2,T3,T4,T616,19,21,22,T7,T8,T9,T10                

3-19    10.4      Fractals                                    1,4,7,10,13,18,T1,T4,T5,T6

 

3-22    Exam III        

3-24      Comprehensive Final Exam  12:00 PM - 1:50 PM

 



 

HOW TO SUCCEED IN A MATH CLASS

  1.  Come to every class meeting.
  2.  Arrive early, get yourself settled, spend a few minutes looking at your notes from the previous class meeting, and have   you materials ready when class starts.
  3.  Read each section before it is discussed in class
  4.  Do some math every day.
  5.  Start preparing for the tests at least a week in advance.
  6.  Spend about half of your study time working with your classmates.
  7.  Take advantage of tutors and office hours, extra help can make a big difference.