Math 203 Practice Midterm 2

 

Please work out each of the given problems.  Credit will be based on the steps towards the final answer.  Show your work.

  Printable Key

Problem 1 

Let  L:  R2 --> R3   be a linear transformation such that 

        L (1,4) = (1,-1,3)   and     L (0,2) =  (2,1,4)

Find L(1,0)

  Solution

Problem 2

Of the following two subsets of the vector space of differentiable functions, determine which is a subspace.  For the one that is not a subspace, demonstrate why it is not.  For the one that is a subspace, prove that it is a subspace.

A.  S  =  {f | f(3)  =  f '(3)} 

B.  T  =  {f | f(0)f '(0)  =  0} 

  Solution

Problem 3

Let  S  =  {t2, t2 + 2t, t2 + 3}  and T  =  {2t - 1, 5t - 3, t2} be subsets of P2 

A.     Prove that S is a basis for P2.  

Solution

B.     Find the transition matrix PS<--T.

Solution

   

Problem 4  

Prove that if A is an m x n matrix such that the columns of A are linearly independent and the rows of A are linearly independent, then m = n.

Solution

Problem 5 

Let

       

A.     Find the rank and the nullity of A. 

B.     Find a basis for the Null Space of A.

C.     Find a basis for the Column Space of A using columns of A.

D.     Find a basis for the Row Space of A using rows of A.

Solution

Problem 6

Let  S  =  {v1, v2, ..., vn} be a set of linearly independent vectors and let v be a vector in the span of S.  Prove that v can uniquely be written as a linear combination of elements of S.  That is that prove that if

      =  a1v1 +a2v2 + ... + anvn        and        =  b1v1 +b2v2 + ... + bnvn     

then

        a1  =  b2, a2  =  b2, ... , an  =  bn

Solution

Problem 7 

Let S = {u1, u2, ... ,un} be an orthonormal set in Rn, and let A be the matrix whose jth column is uj.  Show that det(A) is not equal to zero.

Solution