Name                                    

 

Math 154 Practice Exam 2

 

Please work out each of the given problems.  Credit will be based on the steps that you show towards the final answer.  Show your work.

 Printable Key

Problem 1 
Write as an exponential function

        log7 x  =  y  

 

Problem 2  Find the value of
log9 27






Problem 3  Find the domain of

            x2 - 5x - 1
                                                    
          x3 - 3x2 + 2x

 

Problem 4

Answer the following True or False.  If True, explain your reasoning, if False, explain your reasoning or show a counter-example.

A.     All parabolas y = ax2 + bx + c are graphs of functions.



B.     If the vertex of the parabola y = ax2 + bx + c   has positive y-coordinate and the parabola is concave up, then the parabola has two x-intercepts.



C.     If a graph of a function has two x-intercepts then the function is not 1-1.

 

Problem 5  Let f(x) = 3x + 2, g(x) = x + 3, and c(x) = -1.  Find

 

A)   f ° g (x)  

 

B)       f(x + h) - f(x)
                                                 
                   h

C)   g(f(1))     

 

D)   c ° f (2)     

 

E)      c(x)g(x)
                                           
        f(x) - 7c(x)

 

 

Problem 6   You are constructing a rectangular room such that one side of the room is 14 feet longer than the other side, and the distance from opposite corners is 26 feet.  What are the dimensions of the room?  Give your answer accurate to two decimal places.

 

 

 

Problem 7  Graph the quadratic function.  Label any intercepts, the vertex, and the axis of symmetry.

 

        y  =  -2x2 + 4x + 6

 

Problem 8  The graphs of y = f(x) and y = g(x) are given below.  Find

A.       f(0)

B.      g(-1)

C.      g ° f (1)  

D.          f(1)
                              
    g(-1)


Problem 9  Find the domain and range of the following functions

A.  f(x)  =  2x-1 + 3

B.  f(x)  =  log8(x+2) - 4

 

Problem 10

Sketch the graph of y = 5x.

 

Problem 11

Solve for w in 

        22w  =  1/256

 

Problem 12

When a certain radioactive element decays, the amount to the element A at any time t is given by

        A  =  25 (2t/1500)

How much of the element will be left after 3000 years?

 

Problem 13

Sketch the graph of

y = -2(x - 1)2 + 5

 

Problem 14

If

f (x)  =   log3(2x - 1)

find

f -1(x)

Problem 15

The graph if the function y = f (x) is shown below.  Determine if this function is 1-1.

Graph of a function that rises up and to the right continuously