MATH 154 Practice Exam 2  Key

Please work out each of the given problems.  Credit will be based on the steps that you show towards the final answer.  Show your work.

 

Problem 1   Write as an exponential function

        log7 x  =  y  

Solution
The base of the log is 7, so the base of the exponent will also be 7.  The log and the exponential are inverses of each other, so the x and the y switch.  We get

7y  =  x



Problem 2 Find the value of
log9 27

Solution
We first turn

y  =  log9 27

into exponential form.  We get
9y  =  27
Notice that 9 and 27 are both powers of 3:
32y  =  33
We can set the exponents equal to each other to get
2y  =  3

y  =  3/2

We can conclude that

y  =  log9 27


Problem 3   Find the domain of 

           x2 - 5x - 1
                                                    
          x3 - 3x2 + 2x

Solution

        The domain of a rational function is the set of all x such that the denominator is nonzero.

             x3 - 3x2 + 2x   =  0

            x(x2 - 3x + 2)  =  0

            x(x - 2)(x - 1)  =  0

            x  =  0,    x  =  2,    or   x  =  1

so the domain is

        {x| x  0, x  2, x 1}

Problem 4

Answer the following True or False.  If True, explain your reasoning, if False, explain your reasoning or show a counter-example.

A.       All parabolas y = ax2 + bx + c are graphs of functions.

Solution
        True, since these parabolas pass the vertical line test.


B.     If the vertex of the parabola y = ax2 + bx + c   has positive y-coordinate and the parabola is concave up, then the parabola has two x-intercepts.

Solution

   
False,  it will have no x-intercepts.  For example, y  =  x2 + 1 has not x intercepts. 


C.     If a graph of a function has two x-intercepts then the function is not 1-1. 

Solution


True, is it has two x-intercepts then there are two x values that come from the same y value.  Also, the x-axis is a horizontal line that will pass through the graph at twice, violating the horizontal line test.  


Problem 5 

Let f(x) = 3x + 2, g(x) = x + 3, and c(x) = -1.  Find

 

A)     f ° g (x)  

Solution

        f(g(x))  =  f(x + 3)  =  3(x+ 3) + 2  =  3x + 11

B)        f(x + h) - f(x)
                                                  
                    h

Solution

        f(x + h)  =  3(x + h) + 2

so

        f(x + h) - f(x)  =  3(x + h) + 2 - (3x + 2)  =  3x + 3h + 2 - 3x - 2  =  3h

Dividing by h gives

         f(x + h) - f(x)              3h
                                    =              =  3
                  h                         h

C)   g(f(1))     

Solution

        f(1)  =  3(1) + 2  =  5

        g(f(1))  =  g(5)  =  5 + 3  =  8

D)   c ° f (2)     

Solution

        f(2)  =  3(2) + 2  =  8

        c(8)  =  -1    c is always -1

E)         c(x)g(x)
                                               
           
f(x) - 7c(x)

Solution

  Plugging in, we get

             (-1)(x + 3)                -x - 3            -(x + 3)                 1
                                       =                   =                        =  -             
            3x + 2 - 7(-1)            3x + 9            3(x + 3)                3

 

Problem 6  You are constructing a rectangular room such that one side of the room is 14 feet longer than the other side, and the distance from opposite corners is 26 feet.  What are the dimensions of the room?  Give your answer accurate to two decimal places.

  Solution

We use the Pythagorean Theorem

        x2 + (x + 14)2  =  262

        x2 + x2 + 28x + 196  =  676        Multiplying out

        2x2 + 28x - 480  =  0        combing like terms and bringing to the left

        x2 + 14x - 240  =  0        Dividing by 2

        (x + 24)(x - 10)  =  0        factoring

        x  =  10        x cannot be negative

The dimensions are 10 x 24.

 

 

Problem 7  Graph the quadratic function.  Label any intercepts, the vertex, and the axis of symmetry.

 

        y  =  -2x2 + 4x + 6

Solution

The x-coordinate of the vertex is 

         x  =  -b/2a  =  -4/-4  =  1

Now plug 1 into the equation to get

        y  =  -2(1)2 + 4(1) + 6  =  8

Hence the vertex is at (1,8).

To find the y-intercept plug in 0 for x to get

        (0,6)

To find the x-intercept, plug in 0 for y to get

        0  =  -2x2 + 4x + 6

        0  =  x2 - 2x - 3        Dividing by -2

        0  =  (x - 3)(x + 1)    Factoring

        x  =  3  or   x  =  -1    The zero product rule

The x-intercepts are 

        (3,0)    and    (-1,0)

Notice that the coefficient of x2 is negative, so the graph is concave down. Now plot the points and sketch the graph.

 

   

 

 

 

 

Problem 8  The graphs of y = f(x) and y = g(x) are given below.  Find

A.      f(0)

B.    g(-1)

C.     g ° f (1)  

D.         f(1)
                             
   
g(-1)

 

  Solutions

A.  f(0) is the y-intercept of the graph of f(x) which is -1.

B.  g(-1)  =  1 since the graph goes through (-1,1).

C.  Since f(1)  =  -1, we plug -1 into gg(-1)  =  1.

D.  f(1)  =  -1, g(-1)  =  1.  Now divide to get -1/1  =  -1.

 

Problem 9  Find the domain and range of the following functions

A.  f(x)  =  2x-1 + 3

Solution

This function is an exponential function.  Exponential functions have all real numbers as their domain.  The range of the "unshifted" exponential function is all real numbers greater than 0.  Since this function is shifted up by 3, the new range will also shift up by 3.  Thus the range is all real numbers greater than 3.  Notice that the horizontal shift "right 1" does not affect the domain or the range.

B.  f(x)  =  log8(x+2) - 4

Solution

This function is a logarithm function.  The "unshifted logarithm functions have all numbers greater than 0 as its domain.  Since this function is shifted 2 to the left, the domain is also shifted 2 to the left.  Thus the domain is all real numbers greater than -2.  The range of logarithm function is all real numbers.  Notice that the vertical shift "down 4" does not affect the range.

Problem 10

Sketch the graph of y = 5x.

Solution

This is an exponential function. We first find a few points.

x 0 1 -1
y 1 5 1/5

The graph is shown below

       

Problem 11

Solve for w in 

        22w  =  1/256

Solution

First notice that 256 is a power of 2 (powers of 2 are 2, 4, 8, 16, 32, 64, 128, 256) hence

1/256  =  28

256  =  2-8

We have

22w  =  2-8

so that

2w  =  -8

or

        w  =  -4

 

Problem 12

When a certain radioactive element decays, the amount to the element A at any time t is given by

        A  =  25 (2t/1500)

How much of the element will be left after 3000 years?

Solution

We plug 3000 into this equation for t to get

        A  =  25 (23000/1500)  =  (25)22  =  100

 

Problem 13

Sketch the graph of the function below.  Label the vertex and the axis of symmetry.

y = -2(x - 1)2 + 5

Solution

This is a parabola in standard form.  The "-2" causes the parabola to be steeper and to be concave down since the coefficient is negative.  The "- 1" shifts the parabola to the right 1.  The "+ 5" shifts the parabola up 5.  Thus the vertex is (1,5) and the axis of symmetry is x = 1.

The graph is shown below.

Parabola with vertex (1,5) axis of symmetry x=1, concave down, y-int = 3

 

Problem 14

If

f(x)  =  log3(2x - 1)

find

f -1(x)

Solution

First set

y  =  log3(2x - 1)

And switch the x and y.

x  =  log3(2y - 1)

Next, since the log is the inverse of the exponential, we can put this into exponential form.

3x  =  2y - 1

Now add 1 to both sides to get

3x + 1  =  2y

Finally, divide both sides by 2 to get

f^-1 (x)  =  (3^x + 1) / 2

Problem 15

The graph if the function y = f (x) is shown below.  Determine if this function is 1-1.

Graph of a function that rises up and to the right continuously

Solution 

Since every horizontal line passes through this graph at most once, it passes the horizontal line test.  Thus the function is 1-1.