Exercises for Absolute Value Inequalities

Solutions to the odd exercises

1.  The absolute value inequality |ax + b| < c has exactly one solution if c is _________________.

2.  The absolute value inequality |ax + b| < c has no solution if c is _________________.

3.  The absolute value inequality |ax + b| < c has exactly an infinite number of solutions if c is _________________.

For problems 4 through 7 answer true or false and explain your reasoning.

4.  The solution to |x + b| > 1 includes 2 disconnected pieces, one from negative infinitive to a value and the other from a different value to infinity.

5.  The solution to |x + b| < 1 includes only a single interval without its endpoints.

6.  The inequality |3x - b| < 0 has exactly one solution.

7.  Every value of x satisfies the inequality |2x + b| > 0.

For problems 8 through 27, solve the inequality.  Show the solution set in both interval notation and on a number line.

8.  |x| < 3

9.  |x| > 2

10.  |x| > -4

11.  |x| < 0

12.  |x - 1| < 4

13.  |x + 2| < 3

14.  |x + 4| > 6

15.  |x + 5| > 2

16.  |2x - 4| < 12

17.  |3x - 9| > 15

18.  |4x + 3| < 6

19.  |3x - 2| > 5

20.  3|2x - 3| + 1 > 2

21.  2|5x + 1| - 3 < 5

22.  5|4x - 6| + 8 > 2

23.  7|2x + 1| + 3 < 1

24.  |0.1x + 1.2| < 1.1

25.  |2.5x - 0.5| + 1.5 > 3.5

26.    3                       2
              |2x + 1|  <             
         4                       3

27.    1                       3
              |3x - 5|  <             
         2                       4

For exercises 28 through 31 write down an absolute value inequality that had the solution shown.

28. 

29.

30.  (-4,6)

31.  x < 2  or  x > 8

Back to information on Absolute Values

Back to the Math Home Page