Conditional Probability
Section 3.6

 

Public Opinion Polls may categorize respondents by sex, age, race and level of education.  Comparisons are made and trends observed by using conditional probability.

 

The conditional probability of event A given event B is:  

        P(A | B) = n(A B)
                                        
                            n(B)

                                                                                                                                 

Example 1: 

Asked 500 men and women, “Should the driving age be postponed to 18 years?”

(Hypothetical)

   

Yes No Don’t Know Total
Men 110 85 25 220
Women 185 75 20 280
Total  295 160 45 500

 

Find:

 

a)     P( Y )                      

b)     P( Y | W )

c)      P( Y | M )

d)     P( M | Y )

e)  P( Y M)

 

a)  P(Y) = n(Y)/n(S)    = 295/500 = .59 = 59%

b)     P(Y | W) = n(Y  W ) =  185 = .66 = 66%
                     n (W)            280

 

c)      P( Y | M) = n ( Y   M) = 110  = .50 = 50 %
                        n(M)            220

 

d)     P(M | Y) = n ( M   Y) =  110  = .37 = 37%
                          n(Y)           295

 

e)     Requires a new formula not yet derived called the Product Rule.

 

Recall:       P( Y |  M) = n( Y   M)        then       n(M) *P(Y | M) = n( Y   M)
                                              n(M)

 

n(M) *P(Y | M)  =  n( Y   M)                           P(M)*P(Y | M) = P( Y   M)
  n(S)                         n(S)

 

P( Y M) = 220/500 * 110/220 = 110/500 = .22 = 22%

 

Example 2: 

Find the probability that 2 cards dealt are both aces.

 

 Let 

        B = 1st card Ace, 

let 

        A = 2nd card Ace.  

Find     P (A   B).

 

        P( A   B) = P(A | B) * P(B)  =  3/51 * 4/52 

        = 3/663 = .0045 =  .45% (less than ˝ %)

 

TREE DIAGRAM:

                                                ACE                            (4/52)(3/51) = .0045

                                    3/51

                        ACE

            4/52                48/51

            NOT ACE                   (4/52)(48/51) = .0723

 

Start                                                    ACE                (48/52)(4/51) = .0723

            48/52                          4/51  

                        NOT ACE

                                                47/51

                                                            NOT ACE       (48/52)(47/51) = .8506

 

a)  What is P(B A )?  Top Branch = .0045

 

b)     What is P (B’  A)?  Third Branch = .0723

 

c)      What is P(A)?      = P(B A ) + P(B’ A )     

 

Add Top branch and third branch = .0045 + .0723 = .0768

 

 

REVIEW EXAM #3

 

3.2

Basic Terms of Probability: Experiment, Sample Space, Event, Probability, Odds, Mutually exclusive.  Use in Genetics.

3.3

Basic rules of Probability:  0  P(E)  1; P(S) = 1; P( ) = 0; (6 RULES)

        P(E) = n(E)/n(S) = success/total

        Odds(E) = n(E): n(E’) = success: failure

3.4

Combinatorics and Probability:  Using Permutations and Combinations to find probability.  5-card hands in poker, Lottery.

3.5

Expected Value: ($)P(Win) + (-$)P(Lose) Casino games, Decision Theory.

3.6

Conditional Probability: Conditions on results.  Probabibility of A given B.

P(A|B) = n (A B) / n(B)

P (A B ) = P(A | B )* P(B)

 


Back to Counting and Probability Main Page

Back to the Survey of Math Ideas Home Page

Back to the Math Department Home Page

e-mail Questions and Suggestions