Lake Tahoe Community College

MAT 153 – Euclidian Geometry

M, W                   9:00 – 10:50 am   A211

Winter 2002

 

Instructor:      Janine Bouyssounouse

 

Prerequisite:   Successful completion of Math 152B with a grade of “C” or better or the appropriate skill demonstrated through the math assessment process.

 

Course Description:   This is a formal course in geometry covering the basics of lines, planes, angles, triangles, congruence, the Pythagorean Theorem, similarity, and special right triangles.

 

Office Info:     messages: (530) 541-4660 ext 459

                        home: 544-8995

                        e-mail: jcbouyss@yahoo.com

 

Course Text:  Geometry, 2nd Edition, by Harold R. Jacobs

 

Supplies:         Students should obtain a protractor and a compass for use in the second half of the course.

 

Grading Scale:

A         90-100%

B         80-89%

C         70-79%

D         60-69%

F          59% and below

 

Exams:            45%

Quizzes:          20%

Homework:     15%

Final:               20%

 

Exams:            There will be 4 exams, usually occurring on Wednesdays.

 

Quizzes:          There will be at least 4 quizzes usually occurring on Wednesdays. One quiz may be dropped.

 

Homework:     Homework will be collected on Wednesdays (or the day of the quiz/test).

 

Final:               There will be a comprehensive final exam given on Wednesday, March 20 at 10am.

 


Attendance:    Regular attendance in class is an obligation assumed by every student at the time of his/her registration. Students will still be responsible for the work missed because of their absence.

 

Missed Exams/Quizzes:        If a student is going to miss a quiz or exam, the student is responsible for contacting the instructor before the quiz or exam to make arrangements to take it another time.

 

Accommodations for Students with Disabilities: Students requiring accommodations for a certifiable disability should contact the instructor so arrangements can be made.

 

How to Succeed in a Math Class:

  1. Come to every class meeting.
  2. Arrive early, get yourself settled and be ready when class starts. Sit where you won’t be distracted.
  3. Read each section before it is discussed in class.
  4. Do all of the homework.
  5. Do some math every day.
  6. Start preparing for tests at least a week in advance.
  7. Take advantage of tutors and office hours, extra help can make a big difference.
  8. Do some review every time you study math.

 

Tentative Assignments:

 

1.2:      Conditional Statements #1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34

1.3:      Equivalent Statements               #1-5 all, 18-26 all, 30-36 all

1.4:      Definitions                                #1, 4, 7, 10, #13-21 all

1.5:      Valid/Invalid Deductions           #11-22 all

1.6:      Two Premise Arguments           #10-17, 24-27 all

1.7:      Direct Proof                             #7-11, 15

1.8:      Indirect Proof                           #4, 6, 7, 10-13 all

1.9:      Deductive System                     #8, 9, 12-16 all, 21-24 all

2.1:      Points, Lines, Planes                 #1-8 all, 33-41 all

2.2:      Ruler Postulate             #14-23 all, 27, 29-31 all, 34-37 all

2.3:      Properties of Equality                #13-23 all, 35-40

2.4:      Betweenness of Points  #11-29 all

2.5:      Line Segments                          #13, 15, 17, 18, 19, 22-25 all, 29-34 all

2.6:      Polygons                                  #7-16 all, 26-30 all

3.1:      Rays and Angles                       #9-17 all, 27-33 all

3.2:      Protractor Postulate                  #14-23 all, 26-35 all

3.3:      Betweenness of Rays                #9-18 all, 31-35 all

3.4:      Complementary/Supplem.         #9-12 all, 16-18 all, 28-32 all

3.5:      Linear Pairs                              #10-13 all, 19-32 all

3.6:      Parallel and Perpendicular         #11-14 all, 16-20, 25-28 all

4.1:      Triangles                                   #11-35 all

4.2:      Congruent Polygons                  #9-16 all, 21-25 all, 30, 31, 35-38 all

4.3:      Proving Triangles Congr.           #6-11 all, 22-26 all, 28, 29, 31

4.4:      Corresponding Parts                 #18-28 all, 30, 32, 33, 35

4.5:      Isosceles Triangle                     #12-15 all, 21-26 all, 30, 31, 33, 34

4.6:      SSS Congruence                      #7, 8, 14-20 all, 22, 25, 27

4.7:      Constructions                           #10-15 all, 21-31 all

4.8:      More Constructions                  #8, 9, 14-22 all, 26-29 all

6.1:      Proving Parallel Lines                #7-15 all, 26-29 all, 31, 32, 35, 36, 37

6.2:      Perpendicular Lines                  #8-11 all, 14-18 all, 22-24 all

6.3:      Parallel Postulate                      #8-11 all, 15-17 all, 22-27 all

6.4:      Parallel Post. Consequences     #7-10 all, 16-20 all, 27, 30

6.5:      Distance                                   #5, 6, 7, 13-20 all, 23, 24

6.6:      Angles of Triangle                     #4, 5, 6, 17-20 all, 26-31 all, 35, 37, 38

6.7:      Proving Triangles Congruent     #12-23 all, 26, 27, 30

7.1:      Quadrilaterals                           #8-16 all, 18, 19, 20, 25-33 all

9.1:      Polygonal Regions of Area        #3, 4, 5, 10-13 all, 25-32 all

9.2:      Squares and Rectangles            #4, 5, 6, 13-20 all, 23-32 all

9.3:      Triangles                                   #3-6 all, 8, 9, 17-25 all

9.5:      Pythagorean Theorem               #5, 8, 9, 11, 12, 14-16 all, 20-29 all

10.1:    Ratio and Proportion                #6-10 all, 13, 14, 20, 21, 23, 24, 27, 28, 31

10.2:    Side-Splitter Theorem               #6-10 all, 13-16 all, 21, 22, 23, 25, 26

10.3:    Similar Polygons                       #7-10 all, 14-17 all, 26-29 all, 30, 31

10.4:    AA Similarity Theorem #5-11 all, 26-28 all, 30, 31

10.5:    SAS Similarity Theorem            #7-12 all, 15, 16, 19, 21, 24, 25, 26

11.5:    Sine and Cosine Ratios #4, 5, 6, 11-16 all, 20-22 all, 26-28 all, 30, 33, 35