Name                                     

 

MAT 204 Practice Exam 2

 

Please work out each of the given problems on your own paper.  Credit will be based on the steps that you show towards the final answer.  Show your work.

Problem 1  (15 Points each)

Solve the following differential equations.

A y''' - 3y'' + 3y' - y  =  0

Solution

The characteristic equation is 

        r3 - 3r2 + 3r - 1

We can factor this either by a calculator or by noting that r  =  1 is a root and dividing by r - 1.  Either way we get

        (r - 1)3 =  0

which has a root of order 3 at x  =  1.

The solution is therefore

        y  =  c1et + c2tet + c3t2et 

     

B.  y(iv) - y  =  0  

Solution

  The characteristic equation is 

        r4 - 1  =  0

This factors as 

        (r - 1)(r + 1)(r2 + 1)  =  0

So the roots are 

        r  =  1,      r  =  -1,      r  =  i,      r  =  -i

The general solution is thus

        y  =  c1et + c2e-t + (c1cos t  +  c2 sin t)

Problem 2  (15 Points each)
Consider the differential equation

        y''' - y'  =  e2t + e3t

                       

A.     Solve this differential equation using the method of UC functions  

Solution

First find the homogeneous solution

        y''' - y'  =  0

The characteristic equation is given by 

        r3 - r  =  0

This factors as 

        r(r + 1)(r - 1)  =  0

        r  =  0,     r  =  1,      r  =  -1

The homogeneous solution is 

        yh  =  c1 + c2et + c3e-t 

Next find the particular solution using UC functions.  We have

        yp  =  Ae2t + Be3t Notice that these do not coincide with yh 

        yp'  =  2Ae2t + 3Be3t 

        yp''  =  4Ae2t + 9Be3t 

        yp'''  =  8Ae2t + 27Be3t 

Plugging into the original differential equation gives

         (8Ae2t + 27Be3t ) - (2Ae2t + 3Be3t)  =  e2t + e3t       

         (8A - 2A)e2t + (27B - 3B)e3t ) =  e2t + e3t       

        6A  =  1    and     24A  =  1

        A  =  1/6    and    B  =  1/24

The final solution is 

        y  =  yh + yp  =  c1 + c2et + c3e-t + 1/6 e2t + 1/24 e3t

 

B.     Solve this differential equation using the method of variation of parameters.

  Solution

We have already solved the homogeneous system

        yh  =  c1 + c2et + c3e-t 

Thus the final solution is 

        y  =  v1 + v2et + v3e-t 

Now compute the Wronskian 

       

The third column of the adjoint is 

       

Divide by the Wronskian to arrive at the third column of the inverse:

 We get the three differential equations

        v1'  =  (-1)(e2t + e3t)    v2'  =  1/2 e-t (e2t + e3t)    v3'  =  1/2 et (e2t + e3t)

        v1'  =  -e2t - e3t    v2'  =  1/2 (et + e2t)    v3'  =  1/2 (e3t + e4t)

Now integrate to get

        v1  =  -1/2 e2t - 1/3 e3t + C1

        v2  =  1/2 (et + 1/4 e2t)  + C2

          v3  =  1/2 (1/3e3t + 1/4e4t) + C3

We have

        y  =  (-1/2 e2t - 1/3 e3t + c1) + (1/2 (et + 1/4 e2t)  + c2)et +(1/2 (1/3e3t + 1/4e4t) + c3)e-t

        =  c1 + c2et + c3e-t + (-1/2 + 1/2 + 1/6)e2t + (-1/3 + 1/4 + 1/8)e4t

        =  c1 + c2et + c3e-t + 1/6 e2t + 1/24 e4t

 

Problem 3  (15 Points)

A 2 kg mass stretches a spring 1.96 meters.  The mass is attached to a viscous damper that exerts a force of 4N when the velocity is 0.1 m/sec.  The mass is then pulled down 0.5m and released. 

A.     Determine the equation of motion for this system.

Solution

We use the formula

mu'' + gu' + ku  =  F  

We have 

        m  =  2    and    F  =  0

Use hooks law to get

        (2)(9.8)  =  k(1.96)

Which produces

        k  =  10

To find g, we use

        4  =  g(.1)

        g  =  40

This gives us the differential equation

        2u'' + 40u' + 10u  =  0    u(0)  =  0.5

or

        u'' + 20u' + 5u  =  0    u(0)  =  0.5

The characteristic equation for this differential equation is 

        r2 + 20r + 5  =  0

and has solution approximately equal to -19.7 and -0.25.  The general solution is 

       y  =  c1e-19.7t + c2e-0.25t

Now use the initial conditions to find the constants.  We have 

        0.5  =  c1 + c2 

Taking the derivative and plugging in 0, we get

        0  =  -19.7c1 - 0.25c2

These two equations give

        c1  =  -0.01            c2  =  0.51       

The final solution is 

       y  =  -0.01e-18.66t + 0.51e-1.34t

B.  Describe (qualitatively) the difference between replacing the viscous damper with an external force of F  =  3sin( t) and replacing the damper with an external force of F  =  2cos(3t).  

Solution

If there is no viscous damper and the external force is 

        F  =  3sin( t)

Then the differential equation becomes

        

        2u''  + 10u  =  3sin( t)        u(0)  =  0.5

The homogenous equation is 

        2u'' + 10u  =  0 

or

        u'' + 5u  =  0

Which has solution 

        yh  =  c1cos( t) + c2 sin( t)  

Since the external force is part of the homogeneous solution, hence the motion exhibits resonance and the motion is unbounded.  In reality, the spring will eventually break.

For the second force, the equation is 

        2u''  + 10u  =  2cos(3t)        u(0)  =  0.5

Since the force is not part of the homogeneous solution, there is no resonance.  Instead the motion will have a beat.

 

Problem 4 
Solve the given differential equation by means of a power series about x = 0.  Find a recurrence relation and write the final solution in the form

       

        y'' + xy' + 2y  =  0,        y(0)  =  0,     y'(0)  =  1

Solution 

We have

       

Plugging back into the original differential equation gives

       

Now adjust the sums so that they all contain the same powers of x.

       

Now pull out the n = 0 term and combine the sums

       

Next use the initial conditions to get

        a0  =  0        a1  =  1

        2a2 + 2a0  =  0  

Hence

         a2  =  0

The recursion relationship gives

        (n + 2)(n + 1)an+2 + (n + 2)an  =  0

or

                           -an
   
         an+2  =                                 
                           n + 1

Hence all the even coefficients are 0.  The odds are

                                      -1                      1                        -1                         1
        a1  =  1        a3  =                a5  =                  a7  =                  a9  =                    
                                        2                    3
. 4                    3. 4. 6                 3. 4. 6. 8

In general

                             (-1)n                    (-1)n
    a2n+1  =                                  =                           
                        
2. 4. 6. .... (2n)            2n n!

The general solution is 

       

        

        

Problem 5 

Determine the general solution of the differential equation that is valid in any interval not including the singular point. 

        x2y'' - xy' + y  =  0      

Solution

We let

        y  =  xr

Then 

        y'  =  rxr-1        y''  =  r(r - 1)xr-2

Substituting back into the original equation gives

        r(r - 1)xr - rxr + xr  =  0

        r2 - r - r + 1  =  r2 - 2r + 1  =  0

        (r - 1)2  =  0

        r  =  1 (repeated twice)

Hence

        y  =  (c1 + c2 ln|x|) |xr|

                                                     

Problem

Solve the following differential equation

           

            y(0)  =  y'(0)  =  0

Solution

Since this is a piecewise defined differential equation, we use the method of Laplace Transforms.  

        L(y'') + 4L(y)  =  L(g)  =  L[sin t (1 - u2p(t))  =  L(sin t) - L[(sin t) u2p(t)]

                                          1                     1
        s2L(y) + 4L(y)  =              - e-2ps               
                                       s2 + 1              s2 + 1

Solving for L(y), we get

                                                1
        L(y)  =  (1 - e-2ps                             
   
                                     (s2 + 1)(s2 + 4)

Now use partial fractions 

                   1                        As + B            Cs + D
                                      =                      +                        
   
        (s2 + 1)(s2 + 4)            s2 + 1             s2 + 4

or

        (As + B)(s2 + 1) + (Cs + D)(s2 + 4)  =  1

        As3 + Bs2 + As + B + Cs3 + Ds2 + 4Cs + 4D  =  0

Equating coefficients gives

        A + C  =  0        B + D  =  0        A + 4C  =  0        B + 4D  = 1

This has solution 

        A  =  0        B  =  -1/3        C  =  0        D  =  1/3

Putting this together gives

                       1                           1                   1
         L(y)  =        (1 - e-2ps                    -                        
   
                    3                       s2 + 4             s2 + 1

 

                       1        1                   1                     e-2ps           e-2ps
         L(y)  =                         -                  -                  +                )
   
                    3       s2 + 4            s2 + 1            s2 + 4          s2 + 1 

Now take the inverse Laplace Transform to get

        y  =  1/3 ( 1/2 sin(2t) - sin t - 1/2 u2p sin(2(t-2PI)) + u2p sin t-2PI)

        
            

Problem Please answer the following true or false.  If true, explain why.  If false, explain why or provide a counter-example.

 Solution

A.     The differential equation

         (t - 1)y'' + cos t y' + (t - 1)y  =  et,    y(0)  =  3,     y'(0)  =  4

has a unique solution defined for all real numbers.  

Solution

False,  after dividing by t - 1, p(t)  is not continuous at t  =  1

B.     Let y1  =  t + 1y2  =  4t,  be solutions of the differential equation

        y''' + p(t)y'' + q(t)y' + r(t)y  =  s(t)

with p, q, r, and s all continuous.  Then 

        y3  =  sin t  

cannot also be a solution of this differential equation.

 Solution

We compute the Wronskian 

since -sin t  =  0 at t  =  0, these three function cannot be a solution set for the differential equation.  So True.

C.   If  f(x)  is a function that is not continuous at x  =  2 , then the Laplace transform of  f(x)  is also not continuous at x =  2 .  

Solution

        False, consider u2(t) which is not continuous at 2.  The Laplace transform is e-2s / s which is continuous at 2.

D.  Let      be a solution of the differential equation

            x                     1  
              y''  +                y'  + (sin x)y  =  0
    x + 4              x - 2                

 then  x  =  -1  is in the interval of convergence of y(x).  

Solution

False, the solution converges inside (0,2) which does not contain -1.