Undetermined Coefficients For Higher Order Differential Equations

 

We have already seen how to solve a second order linear nonhomogeneous differential with constant coefficients where the "g" function generates a UC-set.  If you need a review of this click here.  For higher order nonhomogeneous differential equation, the exact same method will work.  

 

Example

Solve

        y''' + y''  =  cos(2t)        y(0)  =  1,      y'(0)  =  2,      y''(0)  =  3

Solution

We first solve the homogeneous differential equation

        y''' + y''  =  0

The characteristic equation is 

        r3 + r2  =  0 

Factoring gives 

        r2(r + 1)  =  0

        r  =  0 (repeated twice)        or        r  =  -1

The homogeneous solution is 

        yh  =  c1 + c2t + c3e-t 

The UC-set generated by g(t)  =  cos(2t) is

        {cos(2t), sin(2t)}

Notice that the UC-set does not intersect the homogeneous solution set.  We can write

        yp  =  Acos(2t) + Bsin(2t)

        yp'  =  -2Acos(2t) + 2Bsin(2t)

        yp''  =  -4Asin(2t) - 4Bcos(2t)

        yp'''  =  -8Acos(2t) + 8Bsin(2t)

Plugging back into the original differential equation gives

          [-8Acos(2t) + 8Bsin(2t)] + [-4Asin(2t) - 4Bcos(2t)]  =  cos(2t)    

Combining like terms gives 

        (-8A - 4B)cos(2t) + (8B - 4A)sin(2t)  =  cos(2t)

Equating coefficients gives 

        -8A - 4B  =  1

        -4A + 8B  =  0

We can use matrices to solve and get

        A  =  -.1      and        B  =  -0.05

The general solution is thus

        y  =  c1 + c2t + c3e-t - .1cos(2t) - 0.05sin(2t)

Now take derivatives to get

        y'  =  c2 - c3e-t + .2sin(2t) - 0.1cos(2t)

        y''  =  c3e-t + .4cos(2t) + 0.2sin(2t)

Plug in the initial values to get

        1  =  c1 + c3 - .1                c1 + c3  =  1.1

        2  =  c2 - c3 - 0.1                c2 - c3  =  2.1

        3  =  c3 + .4                        c3  =  2.6

This is a system of 3 equations and 3 unknowns which can be solve by matrices or easily by hand.  We get

        c1  =  -3.6        c2  =  4.7        c3  =  2.6

The final solution is 

        y  =  -3.6 + 4.7t + 2.6e-t - .1cos(2t) - 0.05sin(2t)

 

Example

Solve

y(iv) +4y''  =  16 + 15et

 

Solution

We first find the solution to the homogeneous differential equation.  The characteristic equations is 

        r4 + 4r2  =  0        r2(r2 + 4)  =  0

The roots are 

        r  =  0  (repeated twice)              r  =  2i        r  =  -2i

The homogeneous solution is 

        yh  =  c1 + c2t + c3sin(2t) + c4cos(2t)

Since g(t) is a sum of two terms, we can work each term separately.  The UC-Set for the function g(t)  =  16 is 

        {1}

Since this is a solution to the homogeneous equation, we multiply by t to get 

        {t}

This is also a solution to the homogeneous equation, so multiply by t again to get

        {t2}

which is not a solution of the homogeneous equation.  We write

        yp1  =  At2         yp1'  =  2At      yp1''  =  2A         yp1'''  =  2A        yp1(iv)  =  0          

Substituting back in, we get

        0 +4(2A)  =  16

        A  =  2

Hence

        yp1  =  2t2

Now we work on the second piece.  The UC-set for g(t)  =  15et is 

        {et}

Since this in not a solution to the homogeneous equation, we get

        yp2  =  Aet        yp2'  =  Aet        yp2''  =  Aet        yp2'''  =  Aet        yp2(iv)  =  Aet    

Plugging back into the original equation gives

        Aet  + 4Aet  =  15et 

        5A  =  15

        A  =  3

Hence

        yp2  =  3et 

The general solution to the nonhomogeneous differential equation is 

        y  =  c1 + c2t + c3sin(2t) + c4cos(2t) + 2t2 + 3et 

 


Back to the Application and Higher Order Equations Home Page

Back to the Differential Equations Home Page

Back to the Math Department Home Page

e-mail Questions and Suggestions