Systems with Complex Eigenvalues

In the last section, we found that if 

        x'  =  Ax

is a homogeneous linear system of differential equations, and r is an eigenvalue with eigenvector z, then

        x  =  zert 

is a solution.  (Note that x and z are vectors.)  In this discussion we will consider the case where r is a complex number

        r  =  l + mi

First we know that if r  =  l + mi is a complex eigenvalue with eigenvector z, then 

        r  =  l - mi

the complex conjugate of r is also an eigenvalue with eigenvector z.  We can write the solution as 

        x  =  k1ze(l + mi)t + k2ze(l - mi)t

We can use Euler's formula to get

        x  =  k1zelt(cos(mt) + i sin(mt)) + k2zelt(cos(mt) - i sin(mt)) 

Writing

        z  =  a + bi        and        z  =  a - bi

We get

        x  =  k1(a + bi)elt(cos(mt) + i sin(mt)) + k2(a - bi)elt(cos(mt) - i sin(mt)) 

Now multiplying and separating into real and imaginary parts, we get

        x  =  elt[k1(a cos(mt) - b sin(mt)  +  i(a sin(mt) + bcos(mt))) 

                 + k2(a cos(mt) - b sin(mt) -  i(a sin(mt) + bcos(mt)))]

Now let

        k1 + k2  =  2c1        and         (k1 - k2)i  =  2c2 

Then we get

        x  =  elt[c1(a cos(mt) - b sin(mt))  +  c2(a sin(mt) + bcos(mt))]

 

Example       

Solve the system of differential equations

        x'  =  -2x + 6y

        y'  =  -3x + 4y

 

Solution

We have 

       

To find the eigenvalues, we find the determinant of 

       

We get 

        (-2 - r)(4 - r) + 18  =  r2 - 2r + 10  =  0

The quadratic formula gives the roots

        r  =  1 + 3i        and        r  =  1 - 3i

Now we find and eigenvector corresponding to the eigenvalue 1 + 3i.  Plugging into A - rI, we get

       

The top row gives

        (-3 - 3i)x  + 6y  =  0

or

        (1 + i)x - 2y  =  0

An eigenvector is 

       

Hence the general solution is 

       

This can be written as

        x  =  et[2c1cos(3t) + 2c2sin(3t)]

        y  =  et[c1(cos(3t) + sin(3t)) + c2(sin(3t) + cos(3t))]

Below is the phase portrait

       

We can see that the solutions spiral out from the origin.  This situation is called a spiral node.  The spiral occurs because of the complex eigenvalues and it goes outward because the real part of the eigenvalue is positive.  If the real part of the eigenvalue had been negative, then the spiral would have been inward.

 


Back to the Power Series Methods and Laplace Transforms Home Page

Back to the Differential Equations Home Page

Back to the Math Department Home Page

e-mail Questions and Suggestions