Nonlinear Systems

 

To solve a system of two equations and two unknowns when the equations are not linear, we use the methods of substitution or elimination and hope that the resulting equation becomes a hidden quadratic or other solvable equation.   

 

Example:  

Solve

        x2 - y  =  0

        x2 - 2x + y  =  6

 

Solution

We use substitution: solving for y in the first equation we get:

        y  =  x2

Putting it into the second equation, we have:

        x2 - 2x + x2 = 6

so that

        2x2 -2x - 6 = 0

or

        x2 - x - 3 = 0

The quadratic formula gives us:

       

so 

        x   =  2.3     or     x   =   -1.3

since

        y  =   x2

we get 

        y = 5.29     or     y = 1.69

We arrive at the two points:

        (2.3,5.29)     and     (-1.3,1.69)

 


 

Example 2

Solve

        x2 + y2  =  29

        x2 - y2  =  3

 

Solution

We use elimination:  adding the two equations, we have

        2x2  =  32

        x =  16

        x   =   4         or         x   =   -4

Putting 

        x   =   4 

into equation 2, we have:

        16 - y2 = 3

        -y2 = -13

        y =          or         y = -

 Putting 

        x = -4 

into equation 2, we have:

        16  -  y2   =   3

        -y2   =   -13

        y   =            or         y   =   -

Therefore we obtain the four points:

        (4,),     (4,-),     (-4,),     (-4,-)

Exercises

Solve the following:

  1.  x2 - y2  =  4

    2x2 + y2  =  16

    (sqrt(20/3),sqrt(8/3)),  (sqrt(20/3),-sqrt(8/3)),  (-sqrt(20/3),sqrt(8/3)),  (-sqrt(20/3),-sqrt(8/3)),


  2. y - 2x2  =  0

    x2 +5x - y  =  -6

    (-1,2), (6,72)


  3.  x2 - y2  =  21

    x2  + xy - y2  =  31

    (5,2),  (-5,-2)

 


Back to the Functions Home Page

Back to the Intermediate Algebra (Math 154) Home Page

Back to the Math Department Home Page

e-mail Questions and Suggestions