Function Algebra and Important Functions

 

Function notation

We write f(x) to mean the function whose input is x.

 

Examples:

If 

        f(x)  =  2x - 3

then 

        f(4)  =  2(4) - 3  =  5

We can think of f and the function that takes the input multiplies it by 2 and subtracts 3.  Sometimes it is convenient to write f(x) without the x. Thus:

        f( ) = 2( ) - 3

whatever is in the parentheses, we put inside.  For example:

        f(x - 1)  =  2(x - 1) - 3

        f(x + 4) - f(x)              [2(x + 4) - 3] - [2(x) - 3]
                                 =                                                    
                4                                          4

                2x + 8 - 3 - 2x + 3                 8
        =                                          =               =   2              
                            4                               4


Exercises

Find

 

  1. f(2x + 1)          4x - 5


  2. f(x2) - f(x)        2x^3 - 2x


 

Composition of Functions

If f(x) and g(x) are functions then we define

         f o g (x)   =    f(g(x))

 

Example:

If 

        f(x) = 4/x 

and 

        g(x) = x2 - x

Then 

                                  4
         f o g(x) =                        
                               x2 - x

 


The Constant Function

Example

Let 

        f(x)   =  x - 1 

and

        k(x)  =  4

Then k(x) is the function that gives the number 4 as its output no matter what the input.  For example:

        k(10)   =   4

        f(k(x))   =   f(4)   =   3

        k(f(x))   =   4

 


 

Function Arithmetic

We define the sum, difference, product and quotient of functions in the obvious way.

Example:

If 

                      x + 1
        f(x)  =                    
                      x - 1

and 

        g(x)  =  x2 + 4

then

                               x + 1
        (f + g)(x)  =                 +   (x2 + 4) 
                               x - 1

 

                              x + 1
        (f - g)(x)  =                  -   (x2 + 4) 
                              x - 1

 

                            x + 1
        (f g)(x)  =                (x2 + 4) 
                            x - 1

                                 x + 1
                                             
                                 x - 1
         (f / g)(x)  =                          
                               x2 + 4

For an interactive demonstration of the arithmetic of functions go to  This Link

 


 

Four Important Functions.

There are four important functions and their variations that we discus here.  A list is given below:

 

  1. Linear Functions (lines)

    You can identify a linear function as

            f(x) = mx + b

    their graphs can be found by plotting the y intercept and using the slope to plot the second point.  To learn more about lines go to Functions and Graphs

  2. Quadratic functions (parabolas)

    You can identify a quadratic function by the equation

            f(x) = ax2 + bx + c

    Their pictures are parabolas.  Previously, we discussed how to graph a parabola in-depth.  For a full review go to Parabolas

     

  3. Square Root Functions

    You can identify a square root function by the equation

            f(x)   =  

    They are half parabolas on their sides.

     

  4. Absolute Value functions:

    You can identify  an absolute value function by the equation

            y   =   |x|

    These look like the letter "V".

     

    Example:  

    The graph of the function 

            f(x)   =   |x - 2|  + 1

    Notice that the vertex is at the point (2,1) since the graph is shifted right 2 and up 1.  

           


Polynomials

A polynomial  function is a sum of multiples of powers of x.  For example,

        f(x) = 3x4 - 2x3 +  x2 - 3

Their graphs are beyond the scope of this course.  

 


Back to the Functions Home Page

Back to the Intermediate Algebra (Math 154) Home Page

Back to the Math Department Home Page

e-mail Questions and Suggestions