LOGARITHMS

 

The inverse of the exponential function-- Logarithms

Below is the graph of 

        y  =  2x  

and its inverse which we defined as

        y   =  log2 x

          

       

We see that the logarithm function y = logbx has the following properties:

  1. The x - intercept is (1,0).

  2. There is a vertical asymptote at x = 0.

  3. The domain is {x | x > 0}.

  4. The range is all real numbers.

  5. The graph goes through (b,1).

 


Evaluating Logarithms

Example

Evaluate 

        log3 81

 

Solution:  

We run the "hook" as shown below

       

and write 

        3y  =  81 

so that 

        y  =  4 

 


Exercises

Evaluate the following

 

  1. log10 100,000,000         8

  2. log5 (1/125)        -3

  3. log27 9        2/3


Example

Solve

        log9 x = 2

 

Solution 

We write 

        x  =  9 =  81

 


Exercises

Solve

  1. log2 x  =  5        25


  2. logb 64  =  3         4

 


Inverse Properties of Logs

Since logs and exponents cancel each other we have:

        blogb x = x 

and

        logb bx = x

 

Example

    2log2 3 = 3

and

        log4 45 = 5

 


 

Three Properties of Logs

        Property 1:  logb (uv)  = logb u  +  logb v    (The Product to Sum Rule)

        Property 2:  logb (u/v) = logb u  -  logb v    (The Quotient to Difference Rule)

         Property 3:  logb u  =  rlogb u                    (The Power Rule)

 

Proof of the power rule

We have the rule for exponents:

       

Canceling the b we get

        logb ur   = rlogb u

Example

Expand:  

        log2 (xy2/z)

by property 2 we have:

        log2 (xy2) -  log2 z

by property 1 we have

        log2 x + log2 y2  - log2 z

By property 3 we have

        log2 x + 2 log2 y - log2 z

 


Exercise

Try to expand:

         2 + 1/2 log_5 (x) - 3/2 log_5 (y)

 


Example

Write as a single logarithm:

        4 log2 x - 1/2 log2 y  + log2 z

Solution:

We first use property 3 to write:

        log2 x4 - log2 y1/2  + log2 z

Now we use property 2:

        log2 x4/y1/2  +  log2 z

Finally, we use property 3:

                   x4
        log2          )  
                  y1/2
                    


Exercise

Write the following as a single logarithm:

        1/3 log3 x + 2 log3 y  - 3 log3 z

log_3[x^(1/3) y^2 / z^3 ]

 

 


Example

Suppose that  

        log2 3 = 1.58 

and that 

        log2 5 = 2.32

Find 

        log2 90

 

Solution

Since 

        90 = (2)(5)(32)

We have

        log2 90  =  log2 (2)(5)(32)  =  log2 2 + log2 5 + log2 32

        =  1 + 2.32 + 2log2 3

        =  1 + 2.32 + 2(1.58)  =  6.48

 


Exercise

Find 

        log2 40/27        3 + 2.32 - 3(1.58)

 


Back to the Exponentials and Logs Home Page

Back to the Intermediate Algebra (Math 154) Home Page

Back to the Math Department Home Page

e-mail Questions and Suggestions