Solutions to the Odd Problems on Hyperbolae Centered at the Origin

 

1.  For the hyperbola

              x2            y2    
                     -                  =  1
             9              4

the vertices are at the points  (-3,0) and  (3,0) .

3.  The asymptotes of the hyperbola 

              x2            y2    
                     -                  =  1
             9              4

have equations y = -2/3 x  and  y = 2/3 x .

5.  The graph of 4x2 - 25y2 =  36 is not a hyperbola since the right hand side is not equal to 1.

True, since hyperbolae do not pass the vertical line test.

7.          x2            y2    
                     -                  =  1
             4             36

   

9.          y2            x2    
                     -                  =  1
            36             25

11.         x2          
                     -   y2       =  1
             9              

13.                       x2    
            y2   -                  =  1
                          7

       

15.         x2          
                     -   16y2       =  1
             4         

     

17.      y2   -   16x2   =  1

19.     100x2   -   81y2   =  1

21.     18x2   -   11y2   =  1

23.     9y2   -   x2   =  36

25.     25x2   -   4y2   = 100

27.     16y2   -   x2   =  25

29.     36x2   -   25y2   =  49

31.     4y2   -   64x2   =  8

33.     6x2   -   15y2   =  9

35.  A hyperbola centered at the origin has vertices (0,-5) and (0,5) and passes through the point ( , 10).  Find its equation.

             y2          
                     -   x2       =  1
             25              

37.    Hyperbola

39.    Line

41.    Parabola      


Back to the Exercises

Back to The Conic Page

Back to the Math 154 Page

Back to the Math Department Home Page