Math 152B Midterm III Key

Please do all of the following problems.  All work and all answers must be done on your own paper.  Credit earned will be based on the steps that you show that lead to the final solution.  Good Luck!

 

 

Problem 1: 

Write down the quadratic formula

 Solution  

       

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 2:

Aislynn paid $26 for two adult tickets and three children’s tickets to the movies.  Kevin paid $48 for 4 adult tickets and 5 children’s tickets.  What is the price of an adult ticket?

 Solution        

        Let x be the price of the adult ticket and

        Let y be the price of the children's ticket

Then the equation that corresponds to Aislynn's purchase is

        2x + 3y  =  26

The equation the corresponds to Kevin's purchase is

        4x + 5y  =  48

        4x + 6y  =  52    Multiplying the first equation by 2

                            

                 -y   =  -4

or

        y  =  4

        4x + 5(4)  =  48    Plugging 4 into the first equation

        4x  =  28    Subtracting 20 from both sides

        x  =  7    Dividing by 4

Hence the price of the adult ticket is $7

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 3:

Sketch the solution set for the following inequalities

A     3x + y  <  6

 Solution

We first write a T table for the solution to

        3x + y = 6

        y
        0 
| 6   
  
    
2 | 0

Next use the test point (0,0):

        3(0) + 0 < 6

is a false statement, hence (0,0) is not in the region.  We thus shade in the other half.

Notice that the inequality is "<" telling us that the line is not included and should be drawn as dashed.

       
                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.     x  >  2

Solution

We can recognize this region as the set of all points that are to the right of the vertical line

       x  =  2

Notice again, since the inequality is ">" we draw the line dashed.

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C.    2x + y  >  0

 Solution

We first write a T table for the solution to

        2x + y = 0

We will need to select a point that is not an intercept since the origin is on the line.

        y
        0 
| 0   
  
     1 | -2

Since (0,0) lies on the line, we use the alternative test point (1,0). 

        2(1) + (0) > 0

is a true statement, hence (1,0) is in the region.  We thus shade in this half.

Notice that the inequality is ">" telling us that the line is included and should be drawn as dashed.

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 4:

Use the discriminant to determine the nature of the roots of the following quadratics.

A.     2x2 + 3x + 4  =  0

Solution

The discriminant is

        32 - 4(2)(4) = 9 - 32 < 0

Since the discriminant is negative, we can conclude that there are no real roots, only two complex conjugate roots.

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.    3x2 + x - 4  =  0 

 

Solution

The discriminant is

        12 - 4(3)(-4) = 1 + 48 > 0

Since the discriminant is positive, we can conclude that there are two distinct real roots.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C.      4354324532453x2 + 2x + 6798797698766  =  0

Solution

The discriminant is two difficult to compute by hand, however we see that the second coefficient is small in comparison to the other two coefficients, that is

        22 - 4(big)(big) = 4 - very big < 0

Since the discriminant is negative, we can conclude that there are no real roots, only two complex conjugate roots.

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 5:   Solve the following system.

  2x - 3y  = 13

    x + 2y   =  -4

Solution

We use the method of substitution. The second equation yields

        x  =  -4 - 2y    Subtracting 2y from both sides

Now substitute the above into the first equation

       2(-4 - 2y) - 3y  = 13

        -8 - 4y - 3y  =  13    Multiplying through

        -8 - 7y  =  13        Combining like terms

        -7y  =  21        Adding 8 to both sides

        y  =  -3        Dividing both sides by 7

Now substitute in -3 for y

        x  =  -4 - 2(-3)

        x  =  -4 + 6  =  2

Hence the solution is  (2,-3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

Problem 6:  

Solve the equation by using the factoring or root method.

A) 10x2  =  13x + 3

Solution

First bring all terms to the left hand side

        10x2 - 13x - 3  =  0

There are two ways of completing this problem.  The first is to use the quadratic formula

        a  =  10    b  =  -13    c  =  -3

       

Hence

                13 + 17
        x =                   
                   20    

or

                13 - 17
        x =                   
                   20    

We get  x  =  3/2    or   x  =  -1/5

 

Alternatively, we can factor using the AC method:

        AC  =  -30

The two numbers that multiply to -30 and add to -13 are

        (-15,2)

We now rewrite

        10x2 - 13x - 3  =  10x2 - 15x + 2x - 3

        =  5x(2x - 3) + 1(2x - 3)        Factoring by grouping

        =  (5x + 1)(2x - 3)  =  0

Hence

        5x + 1  =  0     or       2x - 3 = 0

        x  =  -1/5    or    x  =  3/2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B)   2x2 + 15 = 11

  Solution

        To solve this, there is no "x" term, so we can use the square root property:

        2x2  =  -4        Subtracting 15 from both sides

        x2  =  -2        Dividing both sides by two

        x  =  i        Taking the square root of both sides and pulling out an i

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 7:  

Solve the following by completing the square

   5x2 - 20x + 21  =  0

Solution

        5(x2 - 4x)  + 21  =  0        Pulling out the 5 from the first two terms

Now calculate the magic number (b/2)2

        (-4/2)2  =  (-2)2  =  4

        5(x2 - 4x + 4 - 4)  + 21  =  0        Adding and subtracting the magic number 4

        5[(x - 2)2 - 4] + 21  =  0        Factoring the first three terms

        5(x - 2)2 - 20 + 21  =  0        Distributing the 5 through

        5(x - 2)2 + 1  =  0        Adding the numbers

        5(x - 2)2  =  -1        Adding the numbers

        (x - 2)2  =  -1/5        Dividing both sides by 5

        x - 2  =  i /        Taking the square root of both sides and pulling out an i

        x  =  2 i /        Adding 2 to both sides

        x  =  2 i/5        Rationalizing the denominator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 8: 

Solve the following by any method

A)   6x2 + 5x - 4  =  0  

Solution

We use the quadratic formula with

        a  =  6,    b  =  5,    c  =  -4

       

So that 

        x   =   1/2  +  11/12         or        x   =   1/2  -  11/12   

Notice that we could have instead used the AC method to factor.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B)    2x3 - 18x  =  0

  Solution

We factor:

        2x(x2 - 9)  =  0        Pulling out the greatest common factor

        2x(x - 3)(x + 3)  =  0        Difference of squares

        x  =  0,       x  =  3,   or        x  =  -3        Zero product formula    

                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 9 

The pressure p in pounds per square foot of a wind is directly proportional to the square of the velocity v of he wind.  If a 10-mi/hr wind produces a pressure of 0.3 lb/ft2, what pressure will a 100-mi/hr wind produce?

Solution

        This is a variation problem.  The first sentence implies

        p  =  kv2

        The second sentence tells us

        0.3  =  k(10)2        When v  =  10  p  =  0.3

        0.3  =  100k

        k  =  0.3/100  =  0.003        Dividing both sides by 100

        p  =  0.003v2        Substituting k  =  0.003 back into the original equation

        Now we want to know what p is when v  =  100

        p  =  0.003(100)2        Substituting 100 in for v

        p  =  0.003(10,000)  =  30

        A 100 mile per hour wind will produce a pressure of 30lb/ft2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 10

Please answer the following true or false.  If false, explain why or provide a counter example.  If true, explain why.

A)  Suppose that (1,2) and (3,5) are both solutions to the system of equations

        ax + by  =  c

        dx + ey  =  f

Then the two equations represent the same line

Solution

        True, since if otherwise the lines would either be parallel (have no points of intersection) or intersect in one point.          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B)  If -  1 is a root of the quadratic equation

        ax2 + bx + c = 0

then

    +  1 is also a root.

Solution

        False, the other root is the conjugate, which is

        - -  1