The Quadratic Formula

Quadratic Formula

Lets complete the square for

        ax2 + bx + c

 

  1. a(x2 + b/a x) + c

  2.    -b
                                                            
       2a       
                      
  3.     b2
                
       4a2    


  4.               b             b2          b2          
    a( x2  +        x 
    +           -           )  + c                 
                   a            
    4a2       4a2    


  5.                 b              b2            b2          
    a[ ( x2  +        x  +            ) -           ]  + c                 
                     a             4a2           4a2    



  6.                b                b2          
    a[ ( x +          )2  -             ]  + c                 
                  2a              4a2              


  7.              b               b2          
    a( x +          )2  -              + c                 
                2a              4a              

 

Now what if we want to solve the equation

        ax2 + bx + c = 0

We can equivalently solve

                     b               b2          
        a( x +          )2  -              + c  = 0               
                    2a              4a              

by the root method

                     b               b2          
        a( x +          )2  =              -  c                 
                    2a               4a              

                   b                b2           c  
        ( x +          )2  =              -                    
                  2a               4a2          a     

              b2    -    4ac  
        =                                    
                    4a2    

Now take a square root of both sides to get

       

Finally subtract b/2a from both sides to get the quadratic formula.

 

The Quadratic Formula

The solution to 

          ax2 + bx + c  =  0

is

                   

 

Memorize This Formula!

 

Example  

Solve 

        3x2 - 2x + 5

 

Solution

        a = 3         b = -2          c = 5

We have 

       

 


The Discriminant

We define the discriminant as

        D = b2  - 4ac

is a convenient measure of determining how many real roots (solutions) there are.  Notice that D is the expression inside of the square root sign in the quadratic formula.  Since the square root of a negative number produces only complex numbers, we see that if D is negative, then there will be no real roots.  If D is a positive number, then the quadratic formula will produce two roots (one for the plus and one for the minus).  If D is 0 then plus 0 and minus 0 are the same number, so we get only one root.  The table below summarizes.

 
D Number of Real Roots
Positive 2
Negative 0
Zero 1

 

Example:

How many roots are there for the equation:

        3x2 - 5x + 1  =  0

We have 

        D  =  25 - 12  >  0

hence there are two real roots.

 


The Sum and Product of the Roots

Since the two roots of a quadratic are

       

and

       

then if we add the two roots, we get:

       

and if we multiply the two roots we get

       

 

Note that if a is 1 then the sum of the roots is -b and the product is c.  This relates to factoring when we find two numbers that add to b and multiply to c.


 

Example

What are the sum and product of the roots of

        4x2 -3x + 2

 

Solution 

The sum is 

            b          3
        -        =           
            a          4

and the product of the roots is 

            c           2           1
                  =          =                                      
            a           4           2

 


Determining the Quadratic Equation From the Roots

If we know the roots of a quadratic then it is easy to find the original quadratic by using the zero product formula in reverse.

 

Example

Find an equation of a quadratic that has roots 2 and -4/3.

 

Solution

We can write:

        (x - 2)(x - (-4/3))  =  (x - 2)(x + 4/3) 

                      4                  8                2           8
        =  x2 +         x - 2x -         =  x2      x -        
                      3                  3                3           3

Exercise:  

Find a quadratic with the following roots

 

  1. 0 and -1/2                          x^2 + 1/2 x

  2. 3 -      and     3 +      x^2 - 6x + 7

  3. 4 + i     and     4 - i             x^2 - 8x + 17

 


Back to the Quadratic Functions and Linear Inequalities Page

Back to the Basic Algebra Part II Page

Back to the Math Department Home Page

e-mail Questions and Suggestions