Completing the Square and The Square Root Method
 
 
     The Square Root  Property 
     
     
    If we have 
     
           
    x2  =  k  
    
     
    then we can take the square root of both sides to solve for x. 
     
     
    
     
      
        | 
           The Square Root Property 
          For any positive number k, 
          if         
                    
          x2
          = k
           then      
            
                    
          x   =  
          
           
               or     x  =  -  
            | 
       
     
      
     
    Example 
    Solve 
           
    x2 - 6  =  0 
      
    Solution 
    First add  6 to both sides 
           
    x2  =   6   
    Next use the square root property 
           
    x  =          
    or        x  =  -  
 
    Example 
    Solve 
           
    (x - 3)2 + 5  =  12 
    Solution 
           
    (x - 3)2   = 
    7                              
    Subtract
    5 from both sides 
            x
    - 3  =     
    or    x - 3  =  -    
    Use the square root property 
           
    x  =  3 +   
    or    x  =  3 -      
    Add 3 to both sides 
      
    Caution:  The square root
    property cannot be directly applied in a quadratic that has a middle term such as 
                           
    x2 + 5x - 2 
 
    Completing The Square 
We have seen that the square root property only worked when the middle term was zero.  For
example if
 
        3(x - 1)2 -
3  =  0 
 
then we can use the square root property.  A quadratic is said to be in standard
form if it has the form        
a(x - h)2 + k        Standard
Form of a Quadratic
      
 
If we are given a quadratic in the form
 
        ax2
+ bx + c
 
We would like to put the quadratic into standard form so that we can use the
square root property.  We call the process of putting a quadratic into
standard form Completing the Square.
 
 
 
Below is a step by step process of completing the square.
 
 
 
Example  
 
Complete the Square
 
        2x2 -
8x + 2 = 0
 
  Solution 
    
 
  - 
    Factor the leading coefficient from the first two terms:  
 
     
    2(x2 -
    4x) + 2 
    
     
   - 
    Calculate b/2:  
 
     
         -4 
                
    =  -2           
    b is the coefficient in
    front of the "x" term. 
         2 
    
     
   - 
    Square the solution above:  
 
     
    22 
     = 4 
     
    
   - 
    Add and subtract answer from part three (the magic
    number) inside parentheses:  
 
     
    
            2(x2 -
    4x + 4 - 4) + 2 
    
     
   - 
    Regroup:  
 
     
    2[(x2 - 4x + 4 ) - 4] + 2 
    
     
   - 
    Factor the inner parentheses using part two as a hint:  
 
     
    2[(x
    - 2)2  - 4] + 2 
    
     
   - 
    Multiply out the outer constant:    
 
     
    2(x
    - 2)2  - 8 + 2 
    
     
    
   - 
    Combine the last two constants:   
 
     
    2(x - 2)2 
    - 6 
    
     
   - 
    Breath a sigh of relief.
  
 
Example
 
Complete the square
 
        3x2
+ 5x + 1
 
Solution
 
  - 3(x2 + 5/3 x) + 1        
    Pulling
    a
     3 out of a five is the same as dividing
     5 by
     3
 
     
     
     
  - b/2  =  5/6
 
     
     
     
  - (5/6)2  =  25/36        
    Square  b/2
 
     
     
     
  - 3(x2 + 5/3 x +  25/36 -
    25/36) + 1    Add and subtract the magic number (b/2)2
 
     
     
     
  - 3[(x2 + 5/3 x + 25/36) - 25/36] + 1   
    Regroup
 
     
     
     
  - 3[(x + 5/6)2 - 25/36] + 1   
    Factor the first three terms
 
     
     
     
  - 3(x + 5/6)2 - 25/12 + 1   
    Multiply the 3 through
 
     
     
     
  - 3(x + 5/6)2 -
    13/12       
    Note:  -25/12 + 1 = -25/12 +12/12 = -13/12
 
 
 
 
 
Exercises:  
 
Complete the square 
 
  - 3x2  - 12x + 6        
    
	
  
 
    
   
  - 2x2  - 2x + 4            
    
	
  
 
    
   
  - 4x2 + 4x - 3          
    
	
 
 
 
 
 
Practice
completing the square
 
 
  
Completing the Square to Solve a Quadratic Equation 
 
 
 
Example 
 
Solve 
 
        x2 +
2x - 5  =  0 
 
Solution 
 
        We see that there is a middle term, 2x,
so the square root property will not work.  We first complete the square.  We
have  
 
        (b/2)2 
=  1 
 
        x2 +
2x + 1 - 1 - 5 
=  0               
   Adding
and subtracting 1 
 
        (x + 1)2
- 6 = 0                            
   Factoring
the first three terms 
 
Now we can use the square root property 
 
        (x + 1)2 
=  6                                   
Adding 6 to both sides 
 
        x + 1 
=      
or    x + 1  =  -   
Taking the square root of both sides
 
        x  = 
-1 +     
or    x  =  -1 -    
Subtracting 1 from both sides
 
 
  
 
Example
     Solve 
     
    
            x2
    + 6x + 13  =  0
      
    
     
    Solution 
     
            We see that there is a middle
    term, 6x, so the square root property will not
    work.  We first complete the square.  We have  
     
    
            (b/2)2 
    =  9 
     
            x2
    + 6x + 9 - 9 +
    13  =  0        Adding
    and subtracting the magic number 9 
     
            (x + 3)2
    + 4 = 0        Factoring
    the first three terms 
    
     
    Now we can use the square root property 
     
    
            (x + 3)2 
    =  -4        
    Subtract 4 from both sides 
     
            x + 3 
    =
    
     
         or    x + 3  = -
         Taking the square root of
    both sides
    
 
        x  = 
-3 +     
or    x  =  -3 -    
Subtracting 1 from both sides Notice
    that  is
    not a real number but we can still write the imaginary solutions since        
     
= 
    2i The
    final solutions are        
    x  =  -3 + 2i    or    x 
=  -3 - 2i  
  
Back to the Quadratic Functions
and Linear Inequalities Page
 Back
to the Basic Algebra Part II Page
 Back to the Math
Department Home Page
 e-mail
Questions and Suggestions  |