Trigonometric Derivatives I . Presentations II. Derivative of f(x) = sin(x) Theorem: If f(x) = sin(x) then f'(x) = cos(x) Proof: We compute
III. d/dx cos(x) Theorem: If f(x) = cos(x) then f'(x) = sin(x) Proof: f(x) = cos(x) = sin(pi/2 - x) Hence f'(x) = -cos(pi/2 - x) = -sin(x) IV. The other trig functions Example: d/dx tan(x) = d/dx (sin(x)/cos(x)) = [cos(x)cos(x) - sin(x)(-sin(x))/(cos(x))2] = 1/ (cos(x))2 = sec2 (x) Exercise: Show that A. d/dx cot(x) = -csc2 (x) B. d/dx sec(x) = sec(x) tan(x) C. d/dx csc(x) = -csc(x)cot(x) D. d/dx ln(sec(x) + tan(x)) = sec(x) E. d/dx ln(sec(x) ) = tan(x) Exercises A. Find the equation of the tangent line to y = 2sin(x) + cos(x) at x = pi/6 B. Determine the relative extrema of f(x) = excos(x) |