| 
 
Taylor Polynomials 
     
  Review of the Tangent Line 
 
    
Recall that if  f(x) is a function, then f
'(a) is the slope of the tangent
line at  x = a.  Hence 
 
            y - f(a) = f '(a) (x - a)   
 
    or 
 
            P1(x)  =  y 
    =  f(a) + f '(a) (x - a)  
 
 is the equation of the tangent
line.  We can say that this is  the best  linear approximation to
f(x) near a. 
 
Note:     
P1'(a) = f '(a). 
 
  
Quadratic Approximations
 
Example 
 
Let  
 
        f(x) = e2x 
 
Find the best quadratic approximation at   x =
0. 
 
Solution   
 
Note  
 
        f '(x) = 2e2x   
 
and  
 
        f ''(x) = 4e2x 
 
Let  
 
        P2(x)  =  a0 + a1x +
a2x2   
 
Take derivatives we obtain         
P'2(x) = a1 + 2a2x   
 
and  
 
        P''2(x) = 2a2 
 
We want the derivatives of f and P
to match up.  We have
 
        P2(0)  =  a0 
=  f(0)  =  1  
 
 Hence  
 
        a0 = 1 
         
Next
 
        P2'(0)  
=  a1  =  f '(0)  =  2  
 
 Hence 
 
        a1 =
2
 
Finally
 
 
        P2''(0) = 2a2 =
f ''(0) = 4  
 
 Hence   
 
        a2
 = 2 So 
 
        P2(x) = 1 + 2x + 2x2 
 
         
 
         
Notice that the tangent line approximates the curve well for values near x
= 0, however the quadratic approximation is a better fit near this
point.  This leads us to the idea of using higher degree polynomials to get
even better fitting curves.  
  
The Taylor Polynomial
 
 
Suppose that we want the best  nth degree approximation to  f(x)
at  x = a.  We compare  f(x) to 
 
        Pn(x) =  a0 + a1(x - a) +
a2(x - a)2  + a3(x - a)3
+ ... + an(x - a)n 
 
We make the following observations: 
 
        f(a)  =  Pn(a) 
=  a0   
 
 so that
  
 
        a0 
=  f(a) 
 
Now we investigate the first derivative.
 
        f '(a)  =  P'n(a) 
=   a1 + 2a2(x - a)  +
3a3(x - a)2 + ... + nan(x - a)n-1
at x = a  
 
 so that  
 
        a1 = f '(a)
 
Taking second derivatives gives
 
        f ''(a) = P''n(a) =   2a2 
+
(3)(2)a3(x - a)+ ... + n(n - 1)an(x - a)n-2
at x = a  
 
 so that  
 
                   
1 
        a2 =          
f ''(a) 
                   
2 
 
Note Each time we take a derivative we pick up the next integer in other
words 
         
                    
1 
        a3 =             
f '''(a) 
                 
(2)(3) 
 
 
If we define  f(k)(a) to mean the  kth derivative of
f  evaluated at  a  then 
 
                    
1 
        ak  =             
f (k) (a) 
                    
k! 
 
We now have the key ingredient for our main result. 
 
     
      
                                
          The Taylor Polynomial 
          
          The  nth degree  Taylor polynomial at x =
          a   is
  
                                        
f
''(a)                     
f (3)(a)                        
f (n)(a)     
Pn(x) =  f(a) + f '(a)(x - a) +             
(x - a)2
 +            
 (x - a)3 + ... +            
 (x - a)n 
                                            
2!                         
3!                                 
n!         
          
          
          
           
          
          
          
           
           
            | 
       
     
 
 
The special case when  a = 0 is called the McLaurin
Series 
 
     
      
                 
          The  McLaurin Polynomial 
           
          
          The  McLaurin Polynomial   of a differentiable function
           f(x)   is  
           
                    
          
          
           
          
           
           
           | 
       
     
 
Examples: 
 
Find the fifth degree McLaurin Polynomial for sin x.   Solution We
construct the following table to assist in finding the derivatives.
 
        
 
  
    | k | 
    f
      (k)(x) | 
    f
      (k)(0) | 
   
  
    | 0 | 
    sin
      x | 
    0 | 
   
  
    | 1 | 
    cos
      x | 
    1 | 
   
  
    | 2 | 
    -sin
      x | 
    0 | 
   
  
    | 3 | 
    -cos
      x | 
    -1 | 
   
  
    | 4 | 
    sin
      x | 
    0 | 
   
  
    | 5 | 
    cos
      x | 
    1 | 
   
 
Now put this into the formula to get  
 
                              
1             
0              
-1               
0              
1 
        P5(x) = 0  +         
x  +          
x2  +         
x3  +         
x4  +         
x5
  
                             
1!            
2!              
3!              
4!             
5!
 
                     
x3           x5      
        =  x  -           
+            
                     
6          120
 
Notice how well the McLaurin polynomial  (in green)
approximates y = sin x (in red) for on period.
 
         
 
 
  
Taylor's Remainder
     
Taylor's Remainder Theorem says that any smooth function can be written
    as an  nth  degree Taylor polynomial plus a function that is of
    order  n + 1 near  x = c. 
     
     
      
        
          
Taylor's  Remainder
Theorem
 
 
          
If   f  is smooth from  a 
 to
b, let  Pn(x)  be
the  nth   degree Taylor polynomial at  x =
c, then for every   x 
 there
is a  z   between   x 
 and
 c   with
 
                                  
f (n+1)(z)        
         
f(x) = Pn(x) +                   
 (x -
c)n+1    
                                  
(n + 1)!
 
   | 
       
     
 
Example 
 
We have 
 
 
                                  
(0.1)3     (0.1)5    
sin z 
        sin(0.1)  =  0.1  -            +          
-          
(0.1)6  =  .099833416667 + E 
                                     
6         
120         6!
 
 
Where  
 
                  
1 
        E  <         
(.1)6  = .0000000014 
                 
6!
 We see that the error quite small.
  
  
 
Back
to the Series Page
 Back to the Math 107 Home Page
 Back to the Math Department Home Page
 e-mail
Questions and Suggestions
  
  |