Series

Definition of a Series

Let an be a sequence then we define the nth partial sum of an as

sn = a1 + a2 + ... + an


In other words, we define sn by adding up the first n terms of an.  We define the series as the limit of  the sn that is

S =  San   =  a1 + a2 + a3 + ...


If the limit exists then we say that the series converges.  Otherwise, we say that the series diverges.  

 

Example 

consider 

                            1                    1
        an  =                            -          
                     n2 + 2n + 1            n2

Evaluate 

       

Solution

We write out the first four terms: 

            1           1               1           1                1           1                1           1
                  -              +             -              +             -              +             -              +  ...
            4           1               9           4               16          9               25         16

                  1           1           1           1            1           1           1           1
         =  -         +            -           +            -           +           -           +              +  ...
                  1           4           4           9            9          16         16         25

        =   -1

Such a series is called a telescoping series.


Geometric Series

We define a geometric series to be a series of the form

        Sarn

For example:

        3/2 + 3/4 + 3/8 + ...

      Geometric Series Test

For 0 < |r| < 1  we have

and for |r| > 1 the series diverges.


Proof:

Let

        s  =  a + ar + ar2 + ar3 + ar4 + ...  

Then

        rs  =  ar + ar2 + ar3 + ar4 + ...    

subtracting the second equation from the first we get

        s - rs  =  a 

or

        s(1 - r)  =  a,

                      a
        s  =                
                   1 - r


 

The Limit Test


The Limit Test 

If S an converges then

         



Note:
 The contrapositive says that if the limit is nonzero, then the series does not converge.

Caution:  If the limit goes to zero then the series still may diverge.

Examples

  1.  diverges by the limit test since the limit is 1 not 0.

  2. does not converge even though the limit goes to 0.  This series is called the harmonic series.



The Harmonic Series

Harmonic Series Test 

The series with terms 1/n diverges.

Proof:  we write

            1        1        1         1         1         1         1        1
                                          +                    +
            1        2        3         4         5         6         7        8

               1        1        1         1         1         1         1        1
          +                                 +                    + ...
               9       10       11      12       13        14       15      16

 

              1        1        1         1         1         1         1        1
        >                                  +                    +
              1        2        4         4         8         8         8        8

               1        1        1         1         1         1         1        1
          +                                 +                    + ...
              16      16       16       16       16        16       16      16

 

              1        1        1         1       
        =                           + ...
              1        2        2         2     

which diverges by the nth term test.  Hence the harmonic series diverges.

 



Back to the Series Page

Back to the Math 107 Home Page

Back to the Math Department Home Page

e-mail Questions and Suggestions