| 
 
Polar Coordinates 
     
  Definition of  Polar Coordinates 
 
    Recall that we define a point  (x,y) on the plane as
 x units to the right
of the origin and  y units to the left of the origin.  This works great
for lines and parabolas, but circles have somewhat messy equations.  As
an alternative we define a new coordinate system where the first coordinate 
r is the distance from the origin to the point and the second coordinate q
    is the angle that the ray from the origin to the point makes with the
positive  x-axis.  From trigonometry, we have 
 
     
 
Your calculator has a special mode for polar coordinates.  We use
the calculator to graph
 
        r = 5cosq   
 
 and  
 
        r = cos( 
 ) 
 
         
 
 
  
Circles
 
A circle centered at the origin has equation 
 
 
        x2 + y2 = R2 
 
In polar form we have 
 
        r = R 
 
For example the circle of radius  3 centered at  (0,0) has polar equation 
 
        r = 3
  
   Lines
 
If  
 
        y = mx + b  
 
 we can write 
 
        r sin(q) =
m r cos q + b  
 
 or 
 
                           
b 
        r  =                                     
                  
sin q  -  m cos q 
 
  
Conic Sections 
 
Recall that a conic section is defined as follows: 
Let  f  ( called the focus) be a fixed point in the plane,
 m (called the
directrix)
be a fixed line, and  e (called the eccentricity) a positive constant.  Then
the set of points  P in the plane with 
 
      |PF|  
               
=   e 
      |Pm| 
 
 
is a conic section.  If  e < 1 then the section is an ellipse, if
 e = 1, then its a
parabola,  
and
if  e = 0 then it is a hyperbola. 
 
Note:   If  F is the origin  m is
 x = d then 
 
        |PF| = r,     |Pm| = d -
r cos q  
 
 so that the equation becomes 
 
        r = e(d - rcos(q)) = ed -
recos(q) 
 
or 
 
     
   
 
Derivatives in Polar Coordinates 
     
Theorem   
 
 Let  r = r(q) represent a polar curve, then  
dy             
dy/dq                  r' sinq
    + r cosq 
          
=                     
=                                        
  dx             
dx/dq                  
r' cosq
    - r sinq 
 
 
     
      
        | 
                     
          dy             r' sinq
          + r cosq 
                                 
          =                                                  
                       
          dx               
          r' cosq
          - r sinq  | 
       
     
    
 
Proof:   
 
Since  
 
            x = r cosq,    
and     y = r sinq, 
we can substitute in r = r(q) to get 
 
            x = r cosq 
 
    Taking a derivative, 
 
 
            x' = r' cosq -
r sinq 
 
 and 
 
            y' = r' sinq +
r cosq. 
 
    Since  
 
             dy             
dy/dq 
                 
=                                 
         dx             
dx/dq 
 
 
 dividing gives the result.  
Example 
 
Let  
 
        r = q
sinq  
 
Then 
 
        dy              
(sinq
 + q cosq) sinq 
+  q sinq cosq 
                
=                                                                                   
        dx               
(sinq
+ qcosq) cosq 
- q sinq sinq 
 
 
                          
sin2q + 2qsinqcosq 
        =                                                                               
                      
sinq cosq + 
qcos2q - qsin2q 
 
 
 
                  
sinq cosq
+ qcos(2q) 
        =                                                                
                   
sin2q
+ qsin(2q) 
 
    
  
 
Back to the Polar and Parametric
Equations Page
 Back
to the Math 107 Home Page
 Back to the Math Department Home Page
 e-mail
Questions and Suggestions  |