Name                                    

 

MATH 106 PRACTICE MIDTERM 1

 

Please work out each of the given problems.  Credit will be based on the steps that you show towards the final answer.  Show your work.

     Printable Key

 

 PROBLEM 1  Please answer the following true or false.  If false, explain why or provide a counter example.  If true, explain why or state the proper theorem.

A)  Suppose that f(x) and g(x) are differentiable inverse functions, and f '(2) = 3.  Then g'(2) = 1/3.

 

 

B)   If f is a differentiable function such that both f and f ' are positive for all x, then g(x)  =  ln(f(x)) is increasing for all values of x.

 

 

PROBLEM 2  Calculate the derivatives of the following functions.

A)            d
                       (2x)1-x
  
            dx

 

B)        d
                     eln(sin x)
  
         dx

 

C)         d         23t
                                     
  
          dt        t

 

D)      d
                 [ arcsin(1-3x) - (ln x)(arctan x)]
         dx

 

PROBLEM 3 Find the following integrals

A)      

   

B)    

 

 

C)      
 

 

D)     
 

 

 

PROBLEM 4    Let  f(x) = 2x3 + 4x + 5

A.  Prove that f(x) has an inverse.
    


B.    Find       d
                             f -1(11)
  
                  dx
    

PROBLEM 5   

Show that

          d
                     tanh x   =   sech2 x
         dx

 

 

Extra Credit:  Write down one thing that your instructor can do to make the class better and one thing that you do not want changed with the class. 

 


Back to the Math Department Home Page

Questions, Comments and Suggestions:  Email:  greenl@ltcc.edu