The Derivative and Integral of the Exponential Function

Definitions and Properties of the Exponential Function

The exponential function, 

        y = ex  

is defined as the inverse of 

        ln x  

Therefore

        ln(ex) = x 

and 

        elnx = x

Recall that

  1. eaeb  =  ea + b  

  2.  ea/eb  =  e(a - b)

Proof of 2.  

        ln[ ea/eb]  =  ln[ea] - ln[eb

        = a - b  =  ln[e a - b]

    since  ln(xis 1-1, the property is proven.



The Derivative of the Exponential

    
We will use the derivative of the inverse theorem to find the derivative of the exponential.  The derivative of the inverse theorem says that if f and g are inverses, then

                            1
        g'(x)  =                     
                        f
'(g(x))

Let 

        f (x) = ln(x

then

        f '(x) = 1/x 

so that

        f '(g(x)) = 1/ex  

Hence

        g'(x)  =  ex

       

          Theorem

If  
          f (x) = ex  
then
          f '(x) = f (x) = ex

 



Examples:

Find the derivative of

  1. e2x

  2. xex


Solution

  1. We use the chain rule with
         
            y = eu,     u = 2x

    Which gives

         
       y' = eu,     u' = 2

    So that

           
    (e2x)' = (eu)(2) = 2e2x 

  2. We use the product rule:

            (xex)' = (x)' (ex) + x (ex)' 

            = ex + x ex 

Exercises:

Find the derivatives of 

  1. ln(ex)        1

  2. ex /x2        (x^2 e^x - 2x e^x ) / x^4


Examples

A. 

B. 

Solution

  1. Since

             ex   =  (ex)'

    We can integrate both sides to get

            ex dx  =  ex + C

  2. For this integral, we can use u substitution with

      
         u = ex,      du = ex dx

    The integrals becomes

           

            = eu + C  

       
        

Exercises

Integrate:

  1.         1/2 e^(x^2)

  2.         - ln | 1 - e^x |  +  C

 



Back to Math 105 Home Page

Back to the Math Department Home

e-mail Questions and Suggestions