| 
 
Other Bases
     Exponentials With Other Bases
 
          
    
 
  
    |  
 
          
Definition    
 
Let   a > 0
 then 
 
          ax    =
 ex ln a 
      | 
   
 
   
      
Examples 
 
Find the derivative of the following functions 
 
     
      f(x) = 2x 
          
      f(x) = 3sin  x   
          
      f(x) = xx    
        
         
         
          
     
    Solution 
     
      We write 
         
                2x
        = ex ln 2 
         
        Now use the chain rule 
         
                f '(x)
        = (ex ln 2)(ln 2) = 2x ln 2 
          
      We Write 
         
                3sin
        x = e(sin x)(ln
        3) 
         
        Now use the chain rule 
         
                f
        '(x) = (e(sin x)(ln 3))(cos x)(ln
        3)  
         
                = (3sin
        x) (cos x) (ln 3) 
         
        
      We Write 
         
                xx
        = ex ln x 
         
        Notice that the product rule gives 
         
                (x
        ln x)' = 1 + ln x 
         
        So using the chain rule we get 
         
                f
        '(x) = ex ln x (1 + ln x)
        = xx (1 + ln x) 
         
          
       
     
    Exercises 
     
    Find the derivatives of   
     
        x2x + 1    ![x^(2x + 1)  [ (2x + 1) / x  + 2 ln x ]](expone34.gif)  
          
      x4         
          
          
     
     
     
 
Logs With Other Bases
 
     
 
         
 
  
    | 
       Definition    
                             
      ln x 
           loga   x  =               
                             
      ln a           
     | 
   
 
    
     
 
Examples 
 
    Find the derivative of the following functions 
     
      f(x) = log4   x  
          
      f(x) = log (3x + 4) 
          
      f(x) = x log(2x)  
          
     
    Solution 
     
      We use the formula 
         
                f(x) =
        ln x / ln 4 
         
        so that  
         
                f '(x)
        = 1/(x ln 4) 
          
      We again use the formula 
         
                                ln (3x + 4) 
                f (u) 
        =                        
                                   ln 10 
        
         
         
        now use the chain rule to get 
         
                                
        3 ln (3x + 4) 
                f '(x) 
        =                            
                                     
        ln 10 
         
         
          
      Use
        the product rule to get 
         
                
		 
		f  '(x)
        = log(2x) + x(log 2x)' 
        
         
        Now use the formula to get 
         
        
		
                
                          ln 2x          x ( ln 2x)' 
                f ' (2x) 
        =                  
        +                  
                                  
        ln
        10             ln 10 
        
         
         
         
        The chain rule gives 
         
        
		
                                    
        ln 2x                 
        2x 
                f ' (x) 
        =                       
        +                   
                                    
        ln
        10              
        2x ln 10 
        
         
         
        
		        
        
                            
        ln 2x                
        1 
                f ' (x) 
        =                       
        +                
                                    
        ln
        10              
        ln 10 
        
        
         
        
          
         
        
     
Integration 
 
Example 
 
   Find the integral of the following function
 
        f(x) = 2x   
 
 
Solution 
 
         2x
dx =   ex
ln 2 dx         u
= x ln 2,    du = ln 2dx 
 
                     
1 
            =              
 eudu  
                   
ln 2 
 
                
1                              
ex ln 2      
        =                
eu  +  C  =                  
               
ln
2                            
ln 2 
 
                
2x                        
        =               
+  C   
               
ln
2                     
 
      
 Application:  Compound Interest 
 
 Recall that the interest formula is given by:
 
            A = P(1 +
r/n)n  
 where  n is the number of total compounds before we take the money out,  r
is the interest rate, 
 P is the Principal and  A is the amount the account
is worth at the end.   
 If we consider continuous compounding, we take
the limit as  n approaches infinity we arrive at 
 
            A =
 Pert     
 
 
 
Exercise 
 
Students are given an exam and retake the exam
later.  The average score on the exam is 
 
            S = 80 -
14ln(t + 1)  
 
 
 where  t is the number of months after the exam that the
student retook the exam.  At what rate is the average student forgetting
the information after 6 months? 
 
      
   
 
 
Back to
Math 105 Home Page 
Back to the Math Department
Home 
e-mail Questions and
Suggestions 
 
  |