|
The Product and Quotient Rules I. Quiz II. Homework III. The Product Rule Theorem: Let f and g be differentiable functions. Then (f(x)g(x))' = f(x)g'(x) + f'(x)g(x) Proof: We have d/dx (fg) = lim [f(x+h)g(x+h) - f(x)g(x)]/h = lim [f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)]/h = lim [f(x+h)(g(x+h) - g(x)/h + (g(x)(f(x+h) - f(x))/h] = [lim f(x+h)]g'(x) + g(x)f'(x) = f(x)g'(x) + g(x)f'(x)
Example d/dx[(2 - x2)(x4 - 5)] Solution: (2 - x2)(4x3) + (-2x)(x4 - 5) Other examples will be given.
IV The Quotient Rule Remember the poem "lo d hi minus hi d lo square the bottom and away you go" Theorem: d/dx(f/g) = [gf' - fg']/g2 Example: find y' if y = (2x - 1)/(x + 1) Solution: [(x + 1)(2) - (2x - 1)(1)]/(x + 1)2 = 2/(x + 1)2 Exercises will be given. |