| 
 
The Product and Quotient Rules 
     The Product Rule 
     
    
     
      
        | 
 
Theorem  (The Product Rule)
 
Let  f  and  g
 be differentiable functions.  Then
 
          [f(x)
g(x)] ' = f(x) g '(x) + f '(x) g(x)
 
   | 
       
     
 
Proof:
 
We have  
 
         
 
 
Example 
 
Find 
 
        d 
              
(2 - x2)(x4 - 5) 
        dx 
 
Solution:     
 
Here 
 
        f(x)  = 
2 - x2  
 
and 
 
         g(x)  = 
x4 - 5 
 
The product rule gives 
 
          d 
              
(2 - x2)(x4 - 5) 
=  (2 - x2)(4x3) +
(-2x)(x4 - 5)
 
        dx 
 
 
  
 
 
The Quotient Rule
 
Remember the poem
 
        "lo d hi minus hi d lo square the bottom and away you go"
 
This poem is the mnemonic for the taking the derivative of a quotient. 
 
     
 
Example: 
 
Find y' if 
 
                  
2x - 1 
        y'  =                 
                   
x + 1 
 
Solution: 
 
    Here 
  
            f(x) = 2x - 1 
 
    and 
 
            g(x) = x + 1 
 
    The quotient rule gives 
               
(x + 1)(2) - (2x - 1)(1) 
                                                        
                         
(x + 1)2  
                   
2x + 2 - 2x + 1 
        =                                       
                       
(x + 1)2  
                        
3 
       
=                                
                   
(x + 1)2  
 
 
            
  
Other Derivative Sites
 Visual
Calculus
 Karl's Calculus
 CyberCalc
Derivatives
 Eric
Weisstein's Calculus
 Dr.
Sloan's Calculus
 Product
Rule Problems and Solutions
 Quotient
Rule Problems and Solutions
 Product
Rule by Harvey Mudd
 Quotient
Rule by Harvey Mudd
  
 
 
 Back to
Math 105 Home Page 
e-mail Questions and
Suggestions 
 |