| 
 
Derivatives The Easy Way 
     
   Constant Rule and Power Rule
 
We have seen the following derivatives: 
     
      - 
If   f(x) = c, then   f
'(x) = 0 
  
      - 
If   f(x) = x, then   f
'(x) = 1 
  
      - 
If   f(x) = x2, then
  f '(x) = 2x 
  
      If  f(x) = x3, then
         f '(x) = 3x2 
          
      If f(x) = x4, then 
        f '(x) = 4x3 
          
     
This leads us the guess the following theorem. 
 
     
     
    Proof: 
     
    We have 
     
    
             
     
    
  
Applications 
 
 
Example 
 
Find the derivatives of the following functions: 
     
      - 
f(x) = 4x3  - 2x100 
        
      - 
f(x) = 3x5 + 4x8 - x + 2 
  
      - 
 
  f(x) = (x3 - 2)2 
 
 
        
     
Solution   
 
We use our new derivative rules to find 
     
      - 
12x2 - 200x99 
  
      - 
15x3+32x7-1 
  
      First we FOIL to get 
         
        
                [x6 - 4x3 +
        4] '  
         
        Now use the derivative rule for powers 
         
        
                6x5 - 12x2  
          
     
 
    Example: 
     
    Find the equation to the tangent line to  
     
    
            y  = 
    3x3 - x + 4  
     
 at the
point (1,6) 
 Solution: 
 
            y'  = 
9x2 - 1  
 
 at  x = 1 this is 8. Using the point-slope equation for the line gives 
 
            y - 6 
=  8(x - 1)  
 
    or  
 
            y  = 
8x - 2 
  
Example: 
 
Find the points where the tangent line to  
 
        y  =  x3 -
3x2 - 24x + 3  
 
 is horizontal. 
 
Solution: 
 
We find  
 
        y'  = 
3x2 - 6x - 24 
 
The tangent line will be horizontal when its slope is zero, that is, the
derivative is zero.  Setting the derivative equal to zero gives: 
 
        3x2 - 6x - 24 
=  0  
 
or 
 
        x2 - 2x - 8 
=  0  
 
 or 
 
        (x - 4)(x + 2) 
=  0 
 
so that  
 
        x = 4   
or    x = -2 
 
  
Derivative of  f(x) = sin(x) 
  
     
 
Proof:   
 
 
 
 
 
 
  
d/dx cos(x)
 
 
 
  
 
Back to
Math 105 Home Page 
e-mail Questions and
Suggestions 
 |