The Chain Rule

The Chain Rule

Our goal is to differentiate functions such as

        y = (3x + 1)10  

The last thing that we would want to do is FOIL this out ten times.  We now look for a better way.


The Chain Rule 

If 
     
     y = y(u) 

is a function of  
u, and 

         
u = u(x) 

is a function of
x then

             dy           dy     du
                     =                                     
             dx           du     dx         


In our example we have

        y = u10

and 

        u = 3x + 1 

so that

             dy           dy     du
                     =                                     
             dx           du     dx         

        = (10u9)(3) = 30(3x+1)9  


Proof of the Chain Rule

Recall an alternate definition of the derivative:



Example:  

Find f '(x) if

  1. f(x) = (x3 - x + 1)20

  2. f(x) = (x4 - 3x3 + x)5

  3. f(x) = (1 - x)9 (1-x2)4

  4.             (x3 + 4x - 3)7
    f(x) =                             
                       
    (2x - 1)3

Solutions

  1. Here 

            f(u) = u20

    and 

            u(x) = x3 - x + 1

    So that the derivative is 

            (20u19)(3x2 - 1)  =  [20(x3 - x + 1)19](3x2 - 1)

  2. Here 

            f(u) = u5

    and 

            u(x) = x4 - 3x3 + x

    So that the derivative is 

            (5u4)(4x3 - 9x2 + 1)  =  [5(x4 - 3x3 + x)4](4x3 - 9x2 + 1)

  3. Here we need both the product and the chain rule.  First the product rule  

            f '(x) = [(1 - x)9][(1 - x2)4] ' + [(1 - x)9]' [(1 - x2)4]

    Now compute

            [(1 - x2)4]' = [4(1 - x2)3](-2x)

    and

            [(1 - x)9]'  = [9(1 - x)8](-1)

    Putting this all together gives

            f '(x) = [(1 - x)9][4(1 - x2)3](-2x) - [9(1 - x)8] [(1 - x2)4]

Here we need both the quotient and the chain rule.

                (2x - 1)3[(x3 + 4x - 3)7]' - (x3 + 4x - 3)7 [(2x - 1)3]'
f '(x) =                                                                                        
                                                               
(2x - 1)6

We first compute

        [(x3 + 4x - 3)7]' = [7(x3 + 4x - 3)6](3x2 + 4)

and

        [(2x - 1)3]'  = [3(2x - 1)2](2)

Putting this all together gives

                7(2x - 1)3(x3 + 4x - 3)6(3x2 + 4) + 6(x3 + 4x - 3)7 (2x - 1)2
f '(x) =                                                                                                
                                                               
(2x - 1)6




Exercise

Find the derivative of 

                       x2(5 - x3)4 
        f(x)  =                          
                           3 - x


Other Derivative Sites

Visual Calculus

Karl's Calculus

CyberCalc Derivatives

Eric Weisstein's Calculus

Dr. Sloan's Calculus

Chain Rule Problems and Solutions



 

Back to Math 105 Home Page

Back to the Math Department Home

e-mail Questions and Suggestions