Polynomial Division I. Return Midterm II II. Homework II. Review of Long Division The class will use long division to find 495/12 and will write how to divide without using any numbers. We see that we follow the steps: 1) Write it in long division form. 2) Determine what we need to multiply the quotient by to get the first term. 3) Place that number on top of the long division sign. 4) Multiply that number by the quotient and place the product below. 5) Subtract 6) Repeat the process until the degree of the difference is smaller than the degree of the quotient. 7) Write as sum of the top numbers + remainder/quotient. P(x)/D(x) = Q(x) + R(x)/D(x)
(A nonsintactical version of a computer program) while degree of denominator < degree of remainder do {divide first term of remainder by first term of denominator and place above quotient line; multiply result by denominator and place product under the remainder; subtract product from remainder for new remainder; } Write expression above the quotient line + remainder/denominator; We will do the following examples: A) (3x2 + 5x + 7)/(x + 1) B) (2x4 + x - 1)/(x2 + 3x + 1) III. Synthetic Division For the special case that the denominator is of the form x - r, we can use a shorthand version of polynomial division called synthetic division. Here is a step by step method for synthetic division for P(x)/(x - r): Step 1: Drop all the x's filling in zeros where appropriate and set up the division r|a b c d ... and place a horizontal line leaving space between the numbers and the line. Step 2: Put the first coefficient under the line. Step 3: Multiply r by the number under the line and place the product below the second coefficient. Step 4: Add the second column and place the sum below the line. Step 5: Repeat steps 3 and 4 until there are no more columns. Step 6: The last number is the remainder and the first numbers are the coefficients of the polynomial Q(x) Example: Use synthetic division to find (-2x3 + x + 7)/(x + 1)
Solution: -2x2 + 2x + 1 + 8/(x + 1) Steps: 1) Bring down the -2 2) Multiply (-1)(-2) = 2 and place it under the 0 3) Add 0 + 2 = 2 and place it in the third row 4) Multiply (-1)(2) = -2 and place it under the 1 5) Add 1 + (-2) = -1 and place it in the third row. 6) Multiply (-1)(-1) = 1 and place it under the 7 7) Add 7 + 1 = 8 and place it in the third row 8) Write -2x2 + 2x + 1 + 8/(x + 1) We will practice others. IV. The Remainder Theorem P(r) = the remainder of P(x)/(x - r) in particular, if P(r) = 0 then the remainder is also 0. Proof: P(x)/(x - r) = Q(x) + R/(x - r) Multiply both sides by x - r to get P(x) = Q(x)(x - r) + R Plugging in r, we have P(r) = Q(r)(r - r) + R = R.
Exercise: Verify that 2 is a root of x3 - 3x2 + x + 2 using the remainder theorem.
|