Composition and Inverses

  1. Composition of Functions

    Example:  

    Sociologists in Holland determine that the number of people y waiting in a water ride at an amusement park is given by

            y = 1/50C + C + 2

    where C is the temperature in degrees C.  The formula to convert Fahrenheit to Celsius C is given by

            C = 5/9 F + 160/9

    To get a function of F we compose the two function:

            y(C(F)) = (1/50)[5/9F + 160/9]2 + (5/9F + 160/9) + 2

    Exercises: 

     If 

            f(x) = 3x + 2  

            g(x) = 2x2 + 1 

            h(x) =

            c(x) = 4

    1.  Find f(g(x))

    2. Find f(h(x))

    3. Find f(f(x))

    4. Find h(c(x))

    5. c(f(g(h(x))))



  2. 1-1 Functions
                       Definition

    A function f(x) is 1-1 if 

              f(a) = f(b) 

    implies that 

              a = b



    Example:
     

    If 

            f(x) = 3x + 1 

    then 

            3a + 1 = 3b + 1 

    implies that 

            3a = 3b

    hence 

            a = b 

    therefore f(x) is 1-1.

    Example:  

    If 

            f(x) = x2  

    then 

            a2 = b2  

    implies that 

            a2 - b2  = 0 

    or that 

            (a - b)(a + b) = 0 

    hence

            a = b or a = -b

    For example 

            f (2) = f (-2) = 4

    Hence f (x) is not 1-1.



  3. Horizontal Line Test

    If every horizontal line passes through f(x) at most once then f(x) is 1-1.




  4. Inverse Functions


                            Definition  

     

    A function g(x) is an inverse of f (x) if

              f (g(x)) = g(f (x)) = x

     



    Example:
     

    The volume of a lake is modeled by the equation

            V(t) = 1/125 h3

     Show that the inverse is

            h(N) = 5V1/3  

    We have 

            h(V(h)) = 5(1/125h3)1/3 = 5/5h = h

    and 

            v(h(V)) = 1/125(5V1/3)3 = 1/125(125V) = V



  5. Step by Step Process for Finding the Inverse:

    1. Interchange the variables

    2. Solve for y

    3. Write in terms of f -1(x)



    Example:

    Find the inverse of 

            f (x) = y = 3x3 - 5

    1. x =  3y3 - 5

    2. x - 5 =  3y3 , (x - 5)/3 =  y3 , [(x - 5)/3]1/3 

    3. f -1(x) =  [(x - 5)/3]1/3 



  6. Graphing:  

    To graph an inverse we draw the y = x line and reflect the graph across this line.

    To interactively view the graph of an inverse click here:

    http://mathcsjava.emporia.edu/~greenlar/Inverse/inverse.html




Back to Functions Page

Back to Math 103A Home Page

Back to the Math Department Home

e-mail Questions and Suggestions