Fundamental Principles of Counting, Combinations, Permutations

Section 2.3   

Collectively known as Combinatorics.

 

Fundamental Principle of Counting: Construct a tree diagram to keep track of all possibilities.  Each decision made produces new branches.

 

Example 1: 

From a menu that offers 3 salads, 2 entrees, 3 desserts; how many different combinations of dinner can be made?

                                                Dessert 1                               OR:

                        Entrée 1           Dessert 2

                                                Dessert 3                   3   X   2   X   3  =  18

Salad 1                                                                      

Dessert 1                   Decision 1: 3 choices

                        Entrée 2           Dessert 2                   Decision 2: 2 choices

                                                Dessert 3                   Decision 3: 3 choices

 

                                                Dessert 1

                        Entrée 1           Dessert 2                   Each time a decision is made the

                                                Dessert 3                   outcome is multiplied by a factor

Salad 2                                                                       equal to the number of choices.

Dessert 1                   (Order is not important)

                        Entrée 2           Dessert 2

                                                Dessert 3

 

                                                Dessert 1

                        Entrée 1           Dessert 2

                                                Dessert 3

Salad 3                                  

Dessert 1

                        Entrée 2           Dessert 2

                                                Dessert 3

 

Rule: The total number of possible outcomes of a series of decisions, making selections from various categories is found by multiplying the number of choices for each decision.

 

Example 1: 

Find the possible serial numbers formed with the following restrictions:

The first two spaces must be a consonant, the next three are non-zero numbers, the last space is a vowel.

 

a)     No repeats of letters or numbers.

b)     Repeats OK.

 

a)     21  X  20  X  9  X  8  X  7  X  5  =  1,058,400

 

b)     21  X  21  X  9  X  9  X  9  X  5  =  1,607,445


Factorials:

Definiton: 

        n! = n(n-1)(n-2)(n-3)  ...  (3)(2)(1)

 

There is a group of 4 people what want 4 different officer positions in a club.  The positions are:  President, Vice president, Secretary and Treasurer.  How many different combinations can you have of officers?

        4        X  3  X  2  X  1  =  24

The counting method we applied used Factorials:  

        4! = 24

 

Definition:  

        0! = 1

 

Example 2:  

Find

a)     7!   = 5040                        b)  10! = 90                           c)  (8 – 3 )! = 120
   
                                             8!

 

Calculator: 2nd   -->   Math   -->   Prob   -->   !

 


Back to Counting and Probability Main Page

Back to the Survey of Math Ideas Home Page

Back to the Math Department Home Page

e-mail Questions and Suggestions