Theorems

 

1)      Let A,B,C, and D be m x n matrices

A)    A+B=B+A  

B)     A+(B+C)=(A+B)+C

C)    There is a unique m x n matrix O such that  A+O = A.  Matrix O is the zero matrix or the additive identity.

D)    There is a unique m x n matrix D such that A+D = 0.  We can write D as –A therefore A+(-A) = 0.  Matrix –A is the additive inverse or negative of A.

 

2)      Let A,B,C, and D be m x n matrices of the appropriate sizes

a)      A(BC) = (AB)C

b)      A(B+C) = AB+AC

c)      (A+B)C = AC+BC

 

3)      Let A and B be matrices and  r and s are real numbers

a)      r(sA) = (rs)A

b)      (r+s)A = rA+sA

c)      r(A+B) = rA+sA

d)      A(rB) = r(AB) = (rA)B

 

4)      Let A and B be matrices and s is a scalar

a)      (AT)T =  A

b)       (A+B)T = AT+BT

c)      (AB)T = BTAT

d)      (rA)T = rAT

 

5)      Every nonzero m x n matrix is row equivalent to a unique matrix in reduced row echelon form.

 

6)      Let Ax = b and Cx =d be two linear systems each of m equations in n unknowns.  If the augmented matrices [A: b] and [C:d] of these systems are row equivalent, then both linear systems have exactly the same solutions. 

COROLLARY  If A and C are row equivalent m x n matrices, then the linear system Ax = 0 and Cx = 0  have exactly the same solutions.

 

7)      A homogeneous system of m equations in n unknowns always has a nontrivial solution if m<n, that is, if the number of unknowns exceeds the number of equations.

 

8)      If a matrix has an inverse, then the inverse is unique.

 

9)      Let A and B be nonsingular matrices

a)      A-1 is nonsingular and (A-1)-1 = A

b)      AB is nonsingular and (AB)-1 = B-1A-1

c)      (AT)-1 = (A-1)T

COROLLARY        If A1, A2. . . , Ar are n x n matrices, then A1A2. . . Ar is nonsingular and  (A1A2. . .Ar)-1 = Ar-1Ar-1-1. . .A1-1

 

10)   Suppose that A and B are nxn matrices

a)      If AB = In, then BA = In

b)      If BA = In, then AB = In

 

11)  An n x n matrix is nonsingular if and only if is row equivalent to In

 

12)  if A is an n x n matrix, the homogeneous system Ax = 0 has a nontrivial solution if and       only if A is singular.

 

13)  If A is an n x n matrix, then A is nonsingular if and only if the linear system Ax = b has a unique solution for every n x 1 matrix b.

 

14)   det (AT) = det (A)

 

15)  If matrix B results from matrix A by interchanging two rows (columns) of A, then det (B) = -det(A).

 

16)  If two rows (columns) of A are equal, then det(A)=0

 

17)  If a row (column) of A consists entirely of zeros, then det(A) = 0

 

18)  If B is obtained from A by multiplying a row (column) of A by a real number c, then det(B) = cdet(A).

 

19)  If B = [bij] is obtained from A = [aij] by adding to each element of the rth row (column) of A a constant c times the corresponding element of the sth row(column) r s of A, then det(B) = det(A).

 

20)  If a matrix A = [aij] is an upper (lower) triangular then det (A) = a11a22. . .ann  that is the determinant of a triangular matrix is the product of the elements on the main diagonal.

 

21)  det(AB) = det(A)det(B)
COROLLARY
If A is nonsingular, then det (A) is not 0 and det (A-1) = 1/det(A)

 

22)  Let A=[aij] be an n x n matrix. Then for each 1≤i≤n,
        det(A) = ai1Ai1+ai2Ai2+…+ainA
in
(an expansion of det (A) about the ith row) and for each 1≤j≤n,
        det(A) = a1jA1j+a1jA1j. .
.anjAnj
(expansion of det(A) about the ith row).

 

23)  If A = [aij] is a n x n matrix, then 
        ai1Ak1+ai2Ak2+. . . +ainAkn = 0
 for i k
 and  
       
a1jA1k+a2jA2k+. . . +anjAnk = 0 for j k

 

24)  If A=[aij] is an n x n matrix, then
        A(adj A) = (adj A)A =det(A) In.

 

25)  A matrix A is nonsingular if and only if det (A) is nonzero.
COROLLARY
If A is an n x n matrix, then the homogeneous system Ax = 0 has a nontrivial solution if and only if det (A) = 0.

 

26) Cramer’s Rule Let

            a11x1+a12x2+. . . + a1nxn=b1

            a22x1+a22x2+. . . + a2nxn=b2

               :           :      :            :     :

               :           :      :            :     :

            an1x1+an2x2+. . . +annxn=bn

 

      be a linear system of n equations in n unknowns and let A=[aij] be the coefficient matrix so that we can write the given system as Ax=b where

     b1

     b2

b= :

     :

     bn

 

If det (A) is nonzero, then the system has the unique solution

 

x1= det (A1)/det(A), x2=det(A2)/det(A), . . . , xn= det (An)/det(A),

 

where Ai is the matrix obtained from A by replacing the ith column of A by b.