| 
 Solutions to the Odd Problems on Hyperbolae Centered at the Origin 
 1. For the hyperbola              
x2           
y2     the vertices are at the points (-3,0) and (3,0) . 3. The asymptotes of the hyperbola              
x2           
y2     have equations y = -2/3 x and y = 2/3 x . 5. The graph of 4x2 - 25y2 = 36 is not a hyperbola since the right hand side is not equal to 1. True, since hyperbolae do not pass the vertical line test. 7.         
x2           
y2          9.         
y2           
x2     
 11.         x2           
 13.                      
x2            
 15.        
x2           
 17. y2 - 16x2 = 1 
 19. 100x2 - 81y2 = 1 
 21. 18x2 - 11y2 = 1 
 23. 9y2 - x2 = 36 
 25. 25x2 - 4y2 = 100 
 27. 16y2 - x2 = 25 
 29. 36x2 - 25y2 = 49 
 31. 4y2 - 64x2 = 8 
 33. 6x2 - 15y2 = 9 
 35.  A hyperbola centered at the origin has vertices (0,-5)
and (0,5) and passes through the point
(             
y2           37. Hyperbola 39. Line 41. Parabola  |