| 
 
Parametric Equations 
     Lines 
     
    Recall that a line has equation  
     
    
            y  =  mx + b   
     
    Suppose that one airplane
moves along the line  
     
            y 
    =  2x + 3 
     
    while the other airplane moves along the
line  
     
            y 
    =  3x - 2 
    
               
    Can you tell whether the airplanes collide?  Even
though the lines intersect, the equations themselves do not tell us whether
there will be a mid air collision.  To be able to mathematically model
this scenario, we use parametric equation.  We introduce the variable
t for time and write  x and  y as a function of
    t.  
 
Consider the two sets of equations: 
     
      - 
x(t) = t,       y(t) = 2t + 1  
  
      - 
x(t) = 2t,     y(t) = 4t + 1  
     
These describe the same line, but the second one travels twice as fast. 
 
     
      
        
                                          
Definition 
 
          A curve given by  
 
                    x = x(t), y =
          y(t)  
 
 is called a 
parametrically  defined 
 curve and
          the functions  
 
         
 x = x(t)   and  y = y(t)  
 
 are called
the parametric equations for the curve.  | 
       
     
 
  
 
Finding the Parametric Equations for a Line Given Two Points
 
 
 
Example:   
 
Find the parametric equations for the line through
the points  (3,2) and  (4,6)  so that when  t = 0 we are at the point
 (3,2) and
when  t = 1 we are at the point (4,6). 
 
Solution:   
 
We write symbolically: 
 
        (x,y)  =  (1 - t) (3, 2)+
(t) (4, 6)  
 
        =  (3 - 3t + 4t, 2 - 2t + 6t) 
=  (3 + t, 2 + 4t) 
 
so that  
 
        x(t)  = 
3 + t    
and       y(t) 
=  2 + 4t 
 
  
Functions
 
If  y = f(x) is a function of  x we can write parametric equations by writing
 
        x  = 
t      and      y 
=  f(t). 
 
Example   
 
The parabola   
 
        y = x2   
 
can be
represented by the parametric equations:
 
        x  = 
t    
and     y 
=  t2 
  
Circles
 
Consider the circle centered at  (0,0) with radius 2.  We can write it
parametrically as 
 
        x(t)  = 
2cos(t)    
and     y 
=  2sin(t) 
 
We see that the circle is drawn in a counterclockwise direction.  We can draw the same circle as 
 
        x(t)  = 
2cos(-t)    
and     y(t) 
=  2sin(-t) 
 
now the circle is drawn clockwise.  We can also write 
 
        x(t)  = 
2 cos(t2)    
and     y  =  2 sin(t2) 
 
now the circle begins slowly and speeds up. 
  
A Cool Example
 
The graph of  
 
         x(t) = 11cost - 6cos(11/6 t)     
and      y(t) = 11sin(t) - 6sin(11/6
t) 
 
is pictured below: 
 
         
 
 
  
Eliminating the Parameter
 If a curve is given by parametric equations, we often are interested in
finding an equation for the curve in standard form:   
 
        y =
f(x)   
Example 
 
Consider the parametric equations 
 
        x(t) = t2    
and     y(t) =
sin(t)      for  t  > 
0 
 
To find the conventional form of the equation we solve for t: 
 
 
        t = 
  
  
 
hence 
 
        y = sin( ) 
 
is the equation. 
 
Example 
 
Eliminate the parameter for 
 
        x(t)  = 
et    
and     y(t)  =  e2t + 1 
 
 
Solution 
 
We write: 
 
        y(t)  =  (et)2 + 1 
 
Hence  
 
        y = x2 + 1 
  
Intersections
 Let  
 
        x1(t) 
=  2t + 1    
and     y1(t) 
=  4t2   
 
and  
 
        x2(t) 
=  3t      and     
y2(t)  =  3t 
 
Do they intersect?  If so then there is a  c with 
 
        2c + 1  =  3c 
  
 and  
 
        4c2  =  3c 
 
the first equation gives us that  
 
        c  =  1 
 
Putting this into the second equation
we have 
 
        4  =  3  
 
 which tells us that they do not intersect.  Do their graphs intersect? 
If so then there exists a  c and a  k such that 
 
        2c + 1  =  3k  
 
 and  
 
        4c2   =  3k  
 
Hence, we see that 
 
        2c + 1  =  4c2   
 
or that 
 
        4c2  - 2c - 1  = 
0 
 
We solve to get two intersection points 
 
        
 
          
  
 
hence their graphs intercept.  Their graphs are shown on the right.  
  
 
Back
to the Polar and Parametric Equations Page
 Back
to the Math 107 Home Page
 Back to the Math Department Home Page
 e-mail
Questions and Suggestions  |