| 
 
Logs and Derivatives
   
    Definition of the  Natural  Logarithm
 
Recall that 
 
          
What is
 
          
  
 
Definition:  For  x > 0 we define 
 
 
 
Note:  The Second Fundamental Theorem of Calculus tells us that  
 
        d/dx
(ln x) = 1/x 
 
  
    Properties of ln x 
     
    
     
      - 
        
ln 1 = 0 
          
      - 
        
ln(ab) = ln a + ln b 
          
      - 
        
ln(an) = n
        ln a 
          
      - 
        
ln(a/b) = ln a -
        ln  b 
        
         
          
     
Proof of (3)  
 
        
  
So that   
 
        ln(xn)  
 
 and  
 
        n ln x  
 
 have the same derivative.  Hence 
 
        ln(xn) =
n ln x + C 
 
Plugging in  x = 1 we have that  C =
0. 
 
 
  
Definition of   e
 
Let   e be such that  
 
        ln e = 1  
 
ie.  
 
     
  
 
 
Examples and Exercises
 
Example 
 
Find the derivative of  
 
        ln (x2  + 1) 
 
Solution 
 
We use the chain rule with  
 
        y = ln u,   
u = x2 + 1  
 
                                    
  2x 
        y'  =  (2x)(1/u)  
=             
     
                                  
  x2 + 1 
 
 
 Find the derivatives of the following functions: 
 
     
      - 
ln (lnx)          
 
  
      - 
(ln x)/x        
  
 
   
      - 
(ln x)2       
  
 
  
      ln (sec x)       
          
		 
          
      ln (csc x)       
          
		 
          
      - 
Show that  
 
        3 ln x - 4  
 
 is a solution of the differential equation
 
        xy'' + y' = 0 
  
      Find the relative extrema of  
         
                x
        ln x          
          
      Find the equation of the tangent line to  
         
                y = 3x2 -
        ln x  
        
         
 at (1,3)          
		 
        
      Find dy/dx for 
         
                ln(xy) +
        2x2 = 30           
     
  
 
 
Back to
Math 105 Home Page 
Back to the Math Department
Home 
e-mail Questions and
Suggestions 
 
  |