| 
 
Implicit Differentiation 
     Implicit and Explicit Functions 
    
 
An   explicit function is an function expressed as
 y =
f(x) such as 
 
        y = sinx 
 
y is defined   implicitly if both
 x and  y occur on the same side of the
equation such as 
 
        x2 + y2 = 4 
 
we can think of  y as function of  x and write: 
 
        x2 + y(x)2 = 4 
 
  
Implicit Differentiation 
 
To find dy/dx, we proceed as follows: 
     
      - 
Take  d/dx   of both sides of the equation remembering to multiply
by  y'   each time you see a  y 
 term. 
        
      - 
Solve for  y' 
  
     
Example 
 
Find  dy/dx implicitly for the circle  
 
        x2 + y2 = 4 
 
Solution 
     
      - 
        d/dx (x2 + y2) 
= 
d/dx (4) 
 
or 
 
         2x + 2yy' 
=  0 
 
  
      - 
Solving for y, we get 
 
        2yy' 
=  -2x 
 
        y'  =  -2x/2y 
 
        y'  =  -x/y 
 
  
     
Example:   
 
Find  y'  at  (4,2) if  
 
        xy + x/y  = 
10 
 
Solution:   
 
     
      - 
        (xy)' + (x/y)' = (5)' 
 
Using the product rule and the quotient rule we have 
 
                       
y - xy' 
        xy' + y +               
=  0 
                           
y2  
 
  
      - 
Now plugging in x = 4 and  y =
2, 
 
                        
2 - 4y' 
        4y' + 2 +                =  0 
                           
22  
   
 
        16y' + 8 + 2 - 4y' = 0        
Multiply both sides by 4
 
        12y' + 10  =  0
 
        12y' = -10
 
        y' = -5/6 
  
     
 
 
 
Exercises: 
     
      - 
Let     
 
        3x2 - y3  = 4x cosx
+ y2 
 
Find  dy/dx 
 
        
      - 
Find dy/dx at (-1,1) if 
 
        (x + y)3 = x3 + y3   
 
        
      - 
 Find dy/dx if 
  
 
        x2 + 3xy + y2 = 1 
  
        
      - 
Find  y'' if 
 
        x2 - y2 = 4  
     
 
Back to
Math 105 Home Page 
e-mail Questions and
Suggestions 
 |