| 
 
The Chain Rule 
     The Chain Rule
 
Our goal is to differentiate functions such as 
 
        y = (3x + 1)10   
 
The last thing that we would want to do is FOIL this out ten times. 
We now look for a better way.  
    
 
      
        | 
 
The  Chain Rule 
 
If  
     
     y = y(u) 
 
 
is a function of  u, and  
 
         
 u = u(x) 
 
 
is a function
of 
 x
 then
 
            
dy           dy    
du 
                    
=                                      
             dx          
du     dx          
  | 
       
     
 
In our example we have 
 
        y = u10 
 
and  
 
        u = 3x + 1  
 
so that 
 
            
dy           dy    
du 
                    
=                                      
             dx          
du     dx          
 
        = (10u9)(3) = 30(3x+1)9   
 
  
Proof of the Chain Rule
 
Recall an alternate definition of the derivative:
 
 
 
  
Example:   
 
Find  f '(x)  if 
     
      - 
f(x) = (x3 - x + 1)20 
        
      - 
f(x) = (x4  - 3x3 + x)5 
        
      - 
f(x) = (1 - x)9 (1-x2)4 
        
      - 
           
(x3 + 4x - 3)7 
f(x) =                              
                   
(2x - 1)3 
        
     
Solutions 
     
      Here  
         
        
                f(u) = u20 
         
        and  
         
        
                u(x) = x3 - x + 1 
         
        So that the derivative is  
         
        
                (20u19)(3x2
        - 1)  =  [20(x3 - x + 1)19](3x2
        - 1) 
         
        
      Here  
         
        
                f(u) = u5 
         
        and  
         
        
                u(x) = x4  - 3x3 +
        x 
         
        So that the derivative is  
         
        
                (5u4)(4x3
        - 9x2 + 1)  =  [5(x4  - 3x3 +
        x)4](4x3 - 9x2 + 1) 
         
        
      Here we need both the product and the chain
        rule.  First the product rule   
         
        
                f '(x) = [(1 - x)9][(1
        - x2)4] '
        + [(1 - x)9]' [(1 - x2)4] 
         
        Now compute 
         
        
                [(1 - x2)4]'
        = [4(1 - x2)3](-2x) 
         
        and 
         
        
                [(1 - x)9]' 
        = [9(1 - x)8](-1) 
         
        Putting this all together gives 
         
        
                f '(x) = [(1 - x)9][4(1
        - x2)3](-2x) - [9(1 - x)8] [(1 - x2)4] 
         
        
     
Here we need both the quotient and the chain
        rule. 
         
                       
(2x - 1)3[(x3 + 4x - 3)7]'
        - (x3 + 4x - 3)7 [(2x - 1)3]' 
f '(x) =                                                                                         
                                                               
        (2x - 1)6 
         
        We first compute 
         
        
                [(x3 + 4x - 3)7]'
        = [7(x3 + 4x - 3)6](3x2 + 4) 
         
        and 
         
                [(2x - 1)3]' 
        = [3(2x - 1)2](2) 
         
        Putting this all together gives 
         
                       
7(2x - 1)3(x3
        + 4x - 3)6(3x2 + 4) + 6(x3 + 4x - 3)7
        (2x - 1)2 
f '(x) =                                                                                                 
                                                               
        (2x - 1)6
         
         
         
         
        Exercise 
         
        Find the derivative of                        
x2(5 - x3)4  
        f(x)  =                           
                          
3 - x 
  
Other Derivative Sites
 Visual
Calculus
 Karl's Calculus
 CyberCalc
Derivatives
 Eric
Weisstein's Calculus
 Dr.
Sloan's Calculus
 Chain
Rule Problems and Solutions
  
 
 
 Back to
Math 105 Home Page 
Back to the Math Department
Home 
e-mail Questions and
Suggestions 
 |